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Gauge-Invariant Chiral Schwinger Model With
Faddeevian Regularization: Stueckelberg Term,
Operator Solution, and Hamiltonian

and BRST Formulations

Usha Kulshreshtha2

A chiral Schwinger model with the Faddeevian regularizaida Mitra is studied in
one-space one-time dimension in the conventional form of dynamics (on the hyperplanes
x9 = constant) called the “Instant-Form” (IF) dynamics. The original IF theory is seento
be gauge-noninvariant (GNI). Corresponding to this GNI model, a gauge-invariant (Gl)
theory is constructed through the so-called Stueckelberg term. The operator solution
and the Hamiltonian and BRST formulations of the resulting Gl theory, obtained by
the inclusion of the Stueckelberg term in the action of the original GNI theory, are then
investigated with some specific gauge choices. The physical contents of the original GNI
theory are also recovered from the newly constructed Gl theory under a special gauge.

1. INTRODUCTION

The Schwinger model describing electrodynamics in one-space one-time
((1 4+ 1)-) dimension with massless fermions and its chiral versions called the
chiral Schwinger models (CSMs) have been of a very wide interest in recent
years (Boyanovski, 1987; Falck and Kramer, 1987; Floreanini and Jackiw,
1987; Girottiet al,, 1986; Harada, 1990a,b; Harada and Tsutsui, 1988; Jackiw
and Rajaraman, 1985; Kinet al, 1990, 1991, 1992; Kulshreshtha, 2000;
Kulshreshthaet al, 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Kulshreshtha,
1998, in press; Kulshreshtha and Mueller-Kirsten, 1992; Mitra, 1992; Mitra and
Rajaraman, 1988; Mukhopadhyay and Mitra, 1995, 1995a,b; Rajaraman, 1985;
Schwinger, 1962). The CSMs describe a massless Diraciiétdt) in (1 + 1)-
dimension with only one of its chiral components coupled tb(&) vector gauge
field A*(x, t) (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962).
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One of the remarkable achievements of the studies of such theories has been
the development of the fermion—boson correspondence in two-dimensional quan-
tum field theories. The other important achievement has been in the field of un-
derstanding the phenomena of gauge-anomalies and the gauge-anomalous field
theories (Boyanovski, 1987; Falck and Kramer, 1987; Floreanini and Jackiw,
1987; Girotti et al, 1986; Harada, 1990a,b; Harada and Isutsui, 1988;
Jackiw and Rajaraman, 1985; Kiet al,, 1990, 1991, 1992; Kulshreshtha, 2000;
Kulshreshtheet al, 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Kulshreshtha,
2001, in press; Kulshreshtha and Mueller-Kirsten, 1992; Mitra, 1992; Mitra and
Rajaraman, 1988; Mukhopadhyay and Mitra, 1995, 1995a,b; Rajaraman, 1985;
Schwinger, 1962).

Jackiw and Rajaraman (Jackiw and Rajaraman, 1985; Rajaraman, 1985;
Schwinger, 1962), in particular, have considered a gauge-anomalous CSM (Jackiw
and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962). By studying the field
equations and propagator obtained from the effective gauge field action, they con-
cludedthat the theory was not gauge-invariant (Gl) but was unitary and amenable to
particle interpretation (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger,
1962). They also found that the vector gauge boson necessarily acquires a mass
when consistency and unitarity are demanded (Jackiw and Rajaraman, 1985;
Rajaraman, 1985; Schwinger, 1962). The class of regularizations that have been
considered involve the dimensionless Jackiw—Rajaraman (JR) regularization pa-
rameter a (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962);
the JR-CSM (Boyanovski, 1987; Falck and Kramer, 1987; Floreanini and Jackiw,
1987; Girottiet al,, 1986; Harada, 1990a,b; Harada and Isutsui, 1988; Jackiw and
Rajaraman, 1985; Kinet al., 1990, 1991, 1992; Kulshreshtlea al, 1993a,b,c,
1994a,b,c, 1999; Kulshreshtha and Mueller-Kirsten, 1992; Mitra and Rajaraman,
1988; Rajaraman, 1985; Schwinger, 1962) is found to admit exact solutions in a
positive metric Hilbert space respecting unitarity éor 1, for which the theory
is sensible (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962).
In fact, the model is seen to yield a sensible theory for a class of regularizations
(Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962). The spectrum
of the theory depends on the regularization in a crucial way and it is seen to contain,
fora > 1, a massive photon in addition to a massless fermion, aral$od., only
a massless fermion (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger,
1962).

A new regularization that does not belong to the above class has recently
been considered by Mitra (Mitra, 1992). With this regularization (Mitra, 1992),
the photon is once again massive and the massless fermion present in the theory
has (in contrast to the JR regularization) a chirality opposite to that entering the
interaction with the electromagnetic field (Mitra, 1992). This regularization has
been called by Mitra (Mitra, 1992) as the Faddeevian regularization (Mitra, 1992;
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Mukhopadhyay and Mitra, 1995a,b). The original thea@ya(Mitra, Mitra, 1992)
(Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b), which is in accordance with
the Faddeev’s picture (Faddeev, 1984; Faddeev and Shatashvili, 1986) of gauge-
anomalous theories, has a masslike term for the vector gauge Bgsdifferent

from those of the class of models (called JR-CMS) studied earlier (Boyanovski,
1987; Falck and Kramer, 1987; Girott al., 1986; Jackiw and Rajaraman, 1985;
Kulshreshtha&tal, 1993a, 1994a,b; Mitra and Rajaraman, 1988; Rajaraman, 1985;
Schwinger, 1962) and may be taken as a signature of new regularization (Mitra,
1992; Mukhopadhyay and Mitra, 1995a,b).

This theory in contrast with the JR-CSM is seen to possess a self-dual boson
that could also be thought of as a chiral fermion. The theory possesses a vector
gauge anomaly and lacks the gauge invariance. This, in fact, is a consequence of
the Faddeev’s anomaly (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b) in the
theory (where the matrix of the poisson brackets of the constraints of the theory be-
comes nonsingular because of the nonvanishing poisson bracket of the Gauss law
constraint of the theory with itself, called the Faddeev's anomaly (Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b)), which leads to the breaking of the vec-
tor gauge symmetry of the theory, making it gauge-anomalous. The Hamiltonian
formulation (Dirac, 1950) of this theory has been studied in the “Instant Form”
(IF) (Dirac, 1949) by Mitra ((Mitra, 1992), where the theory is seen to be gauge-
noninvariant (GNI), possessing a set of three second-class constraints (Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b).

In a recent paper (Kulshreshtha, 1998), we have studied this theory on the
hyperplanes of the light fronf + x* = constant (Dirac, 1949)) describing the
“Front Form” (FF) of dynamics (Kulshreshtha, 1998). In the present work we study
this theory in the conventional form of dynamics on the hyperplaxfes(constant
(Dirac, 1949)), called the instant-form theory, derived from the original GNI
theory (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b) through the so-called
Stueckelberg term (Kulshreshtha, 1998; Kulshreskhal., 1993a, 1994a,b,c;
Stueckelberg, 1941, 1957): the addition of which to the action of the GNI theory
restores the gauge symmetry of the theory. The Hamiltonian and Becchi, Rouet,
Stora, and Tyutin (BRST) formulations (Becati al, 1974; Henneaux, 1985;
Kulshreshtha, 1998, in press; Kulshreshttaal, 1993a,b,c, 1994a,b,c, 1999;
Kulshreshtha and Kulshreshtha, 2001, in press; Kulshreshtha and Mueller-
Kirsten, 1992; Nameshchansky al., 1988; Tyutin, 1975) and the operator so-
lutions of this newly constructed Gl theory are then studied under some specific
gauge choices. The physical contents of the original GNI theory are also recovered
under a special choice of gauge (Falck and Kramer, 1987), and the equivalence of
the quantized Gl and GNI theories is established (Falck and Kramer, 1987).

In the usual Hamiltonian formulation of a Gl theory under some gauge-
fixing conditions, one necessarily destroys the gauge invariance of the theory
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by fixing the gauge (which converts a set of first-class constraints into a set
of second-order constraints, implying a breaking of gauge invariance under the
gauge fixing.) To achieve the quantization of a Gl theory such that the gauge
invariance of the theory is maintained even under gauge fixing, one goes to a
more generalized procedure called the BRST formulation (Beetchl, 1974;
Henneaux, 1985; Kulshreshtha, 2000; Kulshreslethal, 1993a,b,c, 1994a,b,c,
1999; Kulshreshtha and Kulshreshtha, 2001, in press; Kulshreshtha and Mueller-
Kirsten, 1992; Nameshchansky al,, 1988; Tyutin, 1975). In the BRST formu-
lation of a Gl theory, the theory is rewritten as a quantum system that possesses
a generalized gauge invariance called the BRST symmetry. For this, one enlarges
the Hilbert space of the Gl theory and replaces the notion of the gauge trans-
formation, which shifts operators byrnumber of the gauge functions, namely
by a BRST transformation, which mixes operators having different statistics.
In view of this, one introduces new anticommuting variabteand ¢ called
the Faddeev—Popov ghost and antighost fields, which are Grassmann numbers
on the classical level and operators in the quantized theory, and a commuting
variableb called the Nakanishi—Lautrup field (Becetial, 1974; Henneaux, 1985;
Kulshreshtha, 2000; Kulshreshtégal,, 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha
and Kulshreshtha, 2001; Kulshreshtha and Mueller-Kirsten, 1992; Nameshchansky
et al, 1988; Tyutin, 1975). In the BRST formulation, one thus embeds a Gl theory
into a BRST-invariant system, and quantum Hamiltonian of the system (which
includes the gauge-fixing contribution) commutes with the BRST charge operator
Q as well as with the anti-BRST charge opera@yrthe new symmetry of the
guantum system (the BRST symmetry) that replaces the gauge invariance is main-
tained (even under gauge fixing) and hence projecting any state onto the sector
of BRST- and anti-BRST-invariant states yields a theory that is isomorphic to the
original Gl theory. The unitarity and consistency of the BRST-invariant theory de-
scribed by the gauge-fixed quantum Lagrangian is guaranteed by the conservation
and nilpotency of the BRST chargg.

The plan of the paper is as follows: In Section 2, we briefly recapitulate
the CSM with the Faddeevian regularization (Kulshreshtha, 1998; Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b). In Section 3, we construct the Gl theory cor-
responding to the original GNI theory (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b) through the Stueckelberg term (Stueckelberg, 1941, 1957). The
Hamiltonian formulation and the operator solutions of this newly constructed
Gl theory (obtained by the inclusion of the Stueckelberg term in the action of
the original GNI theory) are studied in Section 4, where the contents of the orig-
inal GNI theory are also recovered from that of the GI theory under a special
choice of gauge (Falck and Kramer 1987). Finally, the BRST formulation of the
Gl theory is studied in Section 5, and the conclusions and discussions are given in
Section 6.
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2. THE GNI THEORY A LA MITRA (MITRA, 1992; MUKHOPADHYAY
AND MITRA, 1995A,B)

In this section, we briefly recapitulate the basics of the GNI-CSM with the
Faddeevian regularization due to Mitra (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b) in one-space one-time dimension. In Kulshreshtha (1998), this theory
has been studied on the hyperplanes of the “Light-Froxit™4 x* = constant),
describing the “Front Form” of dynamics (Dirac, 1949). In the present work we
study this theory in the conventional form of dynamics on the hyperplatfes (
constant), called the “Instant Form” of dynamics (Dirac, 1949). The theory in
the instant form (Dirac, 1949) is described by the bosonized action (Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b):

SV = / ZNdxg dxg (2.1a)
N 1 " yan v 1 v
7 = E(au(p)(a @) +e(@"" — &) (0uP) A, — ZF/LUF
1
+ {EeZAHM’”AV” (2.1b)
1.2 2 i ’ 1 7\2
= E(d) —¢) +e(g + ) (Ao — A1)+§(A1—Ao)
1
+ {éeZ(A0 - A% - 2e2A§H (2.1¢)
w_|+1 0 w_ |1 -1 w_ | 0 +1
9 —[o ] MU=l 3] T o] @O
The overdots and primes denote time and space derivatives respectively. The first
termin (2.1) represents (Mitra, 1992) a massless boson that is equivalent to a mass-
less fermion in two dimensions. The second term represents the chiral coupling of

this fermion to the electromagnetic fieh,. The third term is the kinetic energy
term of the electromagentic field. The last term in (2.1), namely,

) 1

Ly = EeZAM M~ A, (2.2a)
1

= Ee2(AO — A% —2¢% A (2.2b)

is the mass term for the electromagnetic fidlgd and has been derived explicitly
in Mukhopadhyay and Mitra (1995a), using the Pauli-Villars method of regular-
ization, where the effective actid® has been obtained with this unconventional
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mass-term (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). It corresponds to a
new class of regularization called the Faddeevian regularization (Faddeev, 1984;
Faddeev and Shatashvili, 1986); thistheory is in accordance with the Faddeev’s pic-
ture of gauge-anomalous theories (Faddeev, 1984; Faddeev and Shatashvili, 1986;
Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). It is important to recall that in

a true or bonafide Gl theory the matrix of the poisson brackets (PBs) of the con-
straints is a null matrix. Faddeev (Faddeev, 1984; Faddeev and Shatashvili, 1986)
visualised a situation where anomalies make the PB of the Gauss law constraint
with itself nonvanishing. If this happens, the set of constraints becomes second-
class and the gauge invariance of the theory gets lost (Mitra, 1992; Faddeev, 1984;
Faddeev and Shatashvili, 1986). Faddeev argued that there would be more physical
degrees of freedom in such a theory than in the case of Gl theories because no
gauge-fixing conditions would be needed to quantize the theory. Inthe present CSM
with the new (so-called Faddeevian) regularization considered in previous works
(Faddeev, 1984; Faddeev and Shatashvili, 1986; Kulshreshtha, 1998; Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b), the Faddeev’'s mechanism works: namely,
the constraints become second-class through an anomaly in the PB of the Gauss
law constraint with itself (Mitra, 1992). It may be worthwhile to record the mass
term for the vector gauge fieldl,,, for the JR-CSM (Jackiw and Rajaraman, 1985;
Rajaraman, 1985; Schwinger, 1962)

~ 1
Ly = >a EA, A (2.3)

It corresponds to the so-called JR or standard regularization (Jackiw and
Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962), wdéethe regular-
ization parameter introduced by JR. The mass terni\fgtin fact, arises from the
regularization ambiguities associated with the definition of current and contains
the fermionic one-loop effects. It is thus obvious that the present theory (with
the Faddeevian regularization) (Faddeev, 1984; Faddeev and Shatashvili, 1986;
Kulshreshtha, 1998; Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b) corresponds
to a regularization different from those involved in the class of JR-CSMs
(Boyanovski, 1987; Falck and Kramer, 1987; Giradti al, 1986; Jackiw and
Rajaraman, 1985; Kulshreshtéial., 1993a, 19944a,b; Mitra and Rajaraman, 1988;
Rajaraman, 1985; Schwinger, 1962) and the mass t€fnf2.2) is regarded here
as a signature of the new regularization (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b).

Further, the mass-like term for the vector gauge figldn <N (namely 7,
(2.2)) does not have the Lorentz invariance and therefore the theory lacks manifest
Lorentz covariance. However, the Poinegenerators of the theory all defined on
the constraints hypersurface are seen to satisfy the Peiatggbra (Mitra, 1992):

[PS, pr] =0 (2.42)
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[M& PR] = —iP& (2.4b)
[M&% PR] = —iP? (2.4c)

whereP3(=HR), P3(=Pr) and M%(=Mg) are the field operators corresponding
to the field energy or the Hamiltonian, field momentum, and the Lorentz-boost
generator of the theory (defined I8)' or #N (2.1)) defined on the constraints
hypersurface (Mitra, 1992). In view of this, the theory defined by, despite
the lack of manifest Lorentz covariance, is seen to be implicitly Lorentz-invariant
(Mitra, 1992; Kulshreshtha, 1998).

Using the Euler—Lagrange field equations of motion obtained feoth(2.1),
itis easy to see that the divergence of the vector gauge current for the theory defined
by N does not vanish, implying that the theory possesses a vector gauge anomaly
or that the theory is GNI.

A study of the canonical structure of the theory reveals that it possesses
a set of three second-class constraints (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b):

Q1 =TIlp=0 (253.)
Qo =(01E+ell+edp)~0 (2.5b)
Q3 = (Ao + A) ~ 0 (2.5¢)

Where(2; is a primary constraint an@, andQ23 are secondary constraints. Here
I, [To, and E (=I1') are the momenta cononically conjugate respectively to
¢, Ag, and A;. The matrix of the PBs of the constrair® is seen to be non-
singular, implying that the set of constrairi®s is second-class, reflecting a lack
of gauge-invariance in the theory and consequently the model describes a GNI or
gauge-anomalous theory (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). The
gauge symmetry, however, when present in a theory has many beneficial conse-
guences. Itis rather well known that the addition of an appropriate Stueckelberg-/
Wess—Zumino-kind of a term to the action of a GNI theory possessing a set of
second-class constraints converts it into a Gl theory possessing a set of first-class
constraints. Under some special choice of gauge, it is, however, possible to re-
cover the physical content of the GNI theory from the GI theory (Boyanovski,
1987; Girottiet al, 1986; Mitra and Rajaraman, 1988). In the next section, we
would construct a Gl theory corresponding to the present GNI theory (described
by N (2.1))a la Mitra (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b).

Further, using the Hamilton's equations of motion of the GNI theory that
preserve the constraints of the theory (2.5) in the course of time, one can see that
A, satisfies the Klein—Gordon equation (Mitra, 1992)

(8,0" +4€5)AL =0 (2.6)
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implying that the photon has a mass equal|&).2Also, by defining a new fielg
as (Mitra, 1992; Mukhopadhyay and Mitra, 1995,a,b)

1
X=¢+ z—e(aoAl + 01A1) (2.7)

It is seen that the fielgt satisfies the antiduality condition (Kulshreshtha, 1998;
Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b):

dox +91x =0 (2.8)

implying that x is a self-dual field, and thereby implying that the theory con-
tains a chiral boson, which could be thought of as a chiral fermion (Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b). The fieltlsAg, and A; could then be ex-
pressed interms of the free massive scalar #igldnd the free self-dual bosgmn(or
equivalently a chiral fermion) (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b).
Thus the spectrum of the theory in this Faddeevian regularization is found to con-
tain a self-dual boson (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). This is
in contrast to the CSM with the JR regularization (i.e. the JR-CSM) (Boyanovski,
1987; Falck and Kramer, 1987; Giroéti al., 1986; Jackiw and Rajaraman, 1985;
Kulshreshthatal, 1993a, 1994a,b; Mitraand Rajaraman, 1988; Rajaraman, 1985;
Schwinger, 1962) Also, for later purposes, it may be worthwhile to record the
nonvanishing equal-time commutators of this GNI theory obtained by the Dirac
quantization of the theory:

[0, ) = 2i5(x ) (28a)
[AG), TIY) = S50~ y) (2.80)
[A(x), T = 2L u3(x — ¥) (2.80)
(A0, BT = 5(x— ) @.84)
(A, EO)] = ~i5(x — y) (28)

(900, 6] = Sex ~ ) 2.8
(900, A = Se80x ) 289)
(900, Ao = 5230~ y) 2.8n)
(A0, A1(Y)] = 50130~ Y) 28)

2¢?
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(A1), Ao(y)] = 55315(x — Y) (2.8)
[AG(R), Ao(Y)] = 552305~ ) (280
(M6, TI(Y)) = 53180~ Y) (2:8)

Heree(x — y) is a step function defined as

-y =T K020 29)

2.1. The Theory in the Light-Front Frame

Inarecent paper (Kulshreshtha, 1998) we have studied this theory in the light-
front (LF) frame, on the hyperplanes of the L#2x* = (x° + x!) = constant.
The main results of this work are briefly recapitulated here in this section. The the-
ory, described in the LF frame by the Lagrangian density (2.16), with
uw,v =+, —, is seen to possess a set of three second-class constraints:

p1=T"~0, po=[T—-0_¢—2A]~0 (2.10a)
p3=[0_TI" —26%(A~ — AN)] ~0 (2.10b)

wherep; andp; are primary constraints and is a secondary Gauf3 law constraint
andII, IT*, andIT~ are the canonical momenta conjugate respectively to the
fields¢, A—, andA*. The matrix of the PBs of these constraiptss nonsingular,
implying that the set of; is second-class and that the corresponding theory lacks
gauge invariance. An appropriate Stueckelberg term (ST) for this theory has been
calculated in Kulshreshtha (1998) and it reads as

L5 =[(1 - 2e+ 26°)(3,0)(3-0) — (1 — 2€)(34$)(3-0) — (0_6)(3_¢)
+ 2e(e — 1)AT(0,.0) — €%(0.,.0)% — 26 A~ (3,6 — 3_6)] (2.11)

wheref is the Stueckelberg scalar field. The new theory obtained by the addition
of this ST (2.11) to the Lagrangian density (2.1b) of the GNI theory is seen to be
Gl possessing a set of three first-class constraints (Kulshreshtha, 1998):

x1=MT~0, x2=[T—0_¢—2A"+(1-20)3_6]~0 (2.12a)
x3=[0.TT" + Ty — (L— 26)(3.6) + 3¢ + 2e A ~ 0 (2.12b)

Also, x; and x, here are the primary constraints of the new Gl theory, and
is the GauR law secondary constraint. The matrix of the PBs of the constraints
xi is singular, implying that the sef is first-class and that the theory is GI. The
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divergence of the vector gauge current of the theory also vanishes, showing that the
theory has at the classical level a local vector gauge symmetry. The action of the
theory is indeed seen to be invariant under the local vector gauge transformations
(LVGT) (Kulshreshtha, 1998):

SAT = 9.8, SA =03,.B, Sp=—p, 860 =—P (2.13a)
SIIT =8I~ =8I =611, =0; B =pBK",Xx) (2.13b)

This new GI could therefore be quantized under some suitable light-cone gauges.
However, for recovering the physical content of the original GNI theory de-
scribed by (2.1b), we go to a unitary gaugj®® = 0 and choose the gauge-fixing
conditions

m=—0_0=0;, vy=[Ij+0_¢—2ee—1)A"+26°A1=0 (2.14)

The gaugey; translates the new Gl theory into the original GNI theory and the
physical content of the new GI theory under this gaugés the same as that

of the original GNI theory (2.1b). In Kulshreshtha (1998) this new Gl theory
has been Hamiltonian- and BRST-quantized under some specific gauge choices
(cf. Kulshreshtha, 1998, for the details).

3. CONSTRUCTION OF THE GI THEORY:
THE STUECKELBERG TERM

For constructing a Gl theory corresponding$d (2.1), we calculate the
Stueckelberg term fo8\. For this, we enlarge the Hilbert space of the GNI the-
ory defined by (2.1), and introduce a new fiéldcalled the Stueckelberg field
(Kulshreshtha, 1998; Kulshreshtkaal, 1993a, 1994a,b,c; Stueckelberg, 1941,
1957), through the following redefinition of fields and A* in the original ac-
tion SV (the motivation for which comes from the gauge transformations (4.7)
of the expected Gl theory (3.2)) (Kulshreshtha, 1998; Kulshrestithh, 1993a,
1994a,b,c; Stueckelberg, 1941, 1957):

d—> Dd=¢—0 and A* — /b = A+ Jig (3.1)

Here, the Stueckelberg fiedds a full guantum field. Performing the changes (3.1)
in SN (2.1), we obtain the modified action as

S=9'+95)= /i’"dxo dx = /(51“ + Z5) dxo dxg (3.2a)
=Ny &5 (3.2b)

S° = /(f%‘sdxo dxg (3.2¢)
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79 = | 30~ 29000)? ~ @10) ~ o0 of) — (u9)(0a0)
+ €(00¢ + 01)(908 — 016) — €(Ao — A1)(306 + 016)

+ %92(309 — 310)” + €(Ao — A1)(d00 — 010) — 26%(010)°
- 4e2A1(819)] (3.2d)

Here <N andS\ are defined by (2.1) ang® is the appropriate Stueckelberg term
corresponding to the GNI actid®\ (2.1). We shall see later that the acti®n(3.2)
describes a Gl theory. The Euler-Lagrange equations of motion obtainedAfom
(3.2) are

(85 — 92)6 = [e(d0 + 91) (A1 — Ao) + (1 — €)(35 — 7)0

+ 881(310 — 309)] (33&)
91(31A0 — d0A1) = [€(d0 + 31)¢ + €4(Ao — A1) + (€8 — €)dof

— (€* + €)d16] (3.3b)
90(31A0 — d0A1) = [€(d + d1)¢ + €%(Ag — Ay) + 46° Ay + (€8 — €)df

+ (3¢? — €)916] (3.3c)

[(1—e) (35 — 97)p — (e — 1)*350 + (3° — 2e+ 1)3%0]
= [(€% — €)d(Ao — A1) — (€* + &)d1(Ao — A1)
— 46?91 Ay — 2€%00010] (3.3d)

With the help of these equations and the appropriate definition of the vector gauge
current densityj#, we would be able to see in Section 4, that the four-divergence
of the vector current densitj/* (i.e., 9, j*) for this theoryS' (3.2) vanishes, and
thereby implying that the theor§ possesses (at the classical level) a local vector
gauge symmetry (LVGS) or that it does not possess any vector gauge anomaly.
Also, we will see in the next section that the the8ry3.2) describes a constrained
theory possessing a set of three first-class constraints, implying in an alternative
way that the systen$ (3.2) is GI. In the next section, we would also obtain
explicitly the gauge transformations under which the system defined by the action
S (3.2) remains invariant. In fact, we would be able to recover the physical content
of the GNI theory defined by the actid®V (2.1), from the GI theory described

by S (3.2), under some special choice of gauge (cf. Section 4). The quantum
equivalence of the systems defined by the act®h&.1) andS' (3.2) (under the

said special gauge), would be discussed in the next section.
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4. THE HAMILTONIAN FORMULATION AND OPERATOR
SOLUTION OF THE GI THEORY

4.1. The Hamiltonian Formulation

In this section, we consider the Hamiltonian formulation of the Gl theoty
constructed from the GNI theory’N in the last section using the Stueckelberg
method. The momenta canonically conjugate respectively to the field variables
Ao, A1, ¢ and6 obtained from the Lagrangian density' (3.2) are

0!
D= =0 4.1
° = 3R @12
. 0 Z! _ _
E=1II":= 30nD) (80A1 — 91A0) (4.1b)
l‘['—Lf‘—8¢~|—e(Ao—A)+(e—1)89—e89 (4.1c)
= 3(30(15) = 00 1 0 1 .
I 07 1)%300 1)d 5] A
9-—@-[(9— ) 300 + (€ — 1)do¢p + €319 — (Ao — Aq)
+ €2(Ag — A1 — 316)] (4.1d)
= [(e— 1)I1 + ed1¢p — €d10] (4.1e)
<!is thus seen to possess two primary constraints
Y1 =Tlg~ 0 (423)
Yo = [TIy — (e — L)1 — ed1¢ + €3,0] = 0 (4.2b)

The canonical Hamiltonian density corresponding to the Lagrangian dewsity
(3.2)is

) = E(E2 +11%) + %(amb)z + E01A0 — &(Ag — A1)(TT + d1¢p — 16)
+ 26 A2 + %(319)2 + (e — 1)(019)(6:0) — e(2e + 1)(916)?

+ ello:0 + 4e2A1819} (4.3)

After implementing the primary constraint¢; and vy, in the canonical
Hamiltonian density=7. with the help of Lagrange multiplier fields andv,
the total Hamiltonian density’#} could be written as

Ay = S+ Tou + [(1 — &)1 + [y — edr¢p + ed10]v (4.4)
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The Hamilton’s equations of motion of the theory obtained from the total
HamiltonianH{ = [ o7} dx are

dH!

80¢ == a—l_[ = H - e(AO - A]_) + 8819 + (1 - e)V (45a)
aH!
—doIl = a—qu = —02¢ + ed1(Ag — A1) — (€ — 1)820 + edv (4.5b)
dH!
doAg = — = 4.5¢c
o Ao 3T, u ( )
aH!
—oIlg = —T = —9,E — &(I1 + d1¢ — 916) (4.5d)
3P0
aH!
d0AL = —F = E+ 1A (4.5e)
dE
dHL
—3E = A= e(IT + 31 — 310) + 4€*(A1 + 816) (4.5f)
1
aH!
3o = — = 4.5
o o1l v (4.59)
8H-:- 2 2 2
—9ITy = =5 = [—€d1(Ag — A1) — 070 — (e — 1)d7¢ + 2e(2e + 1)0760
— eIl — 48281A1 — 681V] (45h)
aH!
dou=—=0 4.5i
U =2, (4.50)
9 Hy ,
—3dolly = a—uT = g (4.5)
dH!
dov=—_=0 4.5k
AT (4.5k)
dH!
—dolly = a_vT = [(1 — eI + Iy — ed1¢ + €010] (4.5

For the PB{, }, of two functionsA and B we choose the convention
. dA(x) 9B(y)  9dA(X) 8B(y)}

A(x), B = [d — 4.5

(A, B = 2 GG moG) O

Now the requirement of the preservation in time of the primary constyaitdgads
to the secondary constraint:

Y3 i = {Y1, 1} = [91E + (I + 01 — 010)] ~ 0 (4.6)
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The preservation ofi, and 3 for all time, however, does not give rise to any
further constraints. The theory is thus seen to possess three consgraitsand

3. Also the matrix of the PBs of the constraintsis seen to be singular, thereby
implying that the constraintg; form a set of first-class constraints (Kulshreshtha,
1998; Kulshreshthat al, 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Muller-
Kirsten, 1992) and that the theory' describes a gauge invariant theory. In fact
the Lagrangian density’' is seen to be invariant under the time-dependent chiral
gauge transformations:

8¢ = —B(x,1); A= doB(X,t); AL =018(X,1) (4.73)
80 = —B(x,t); 8u=09dB(X,1); 8v=—03B(X,1) (4.7b)
8T1 = 8T1g = 6E = 8Ty = 811, = 811, =0 (4.7¢c)

whereg(x, t) is an arbitrary function of the coordinates.

In quantizing the theory using Dirac’s procedure (Dirac, 1950), one has to
convert the set of first-class constraints of the theory into a set of second-class
ones. One achieves this by imposing, arbitrarily, some additional constraints on
the system in the form of gauge-fixing conditions. Following the work of Mitra and
Rajaraman (1988), Girotéit al.(1986), Boyanovski (1987), and Falck and Kramer
(1987) we go to a special gauge givend#p = 0 (or equivalentlygsd =6 = 0
and—d,0 = —6’ = 0), and accordingly we choose the gauge-fixing conditions of
the theory as (Boyanovski, 1987; Falck and Kramer, 1987; Giebttl, 1986;

Mitra and Rajaraman 1988):

&, =—016 ~0 (4.8a)
Gy =[(Ao+ A1) — (TT + Tp) + e(IT + d1¢)] = O (4.8b)

With the gauge-fixing conditions (4.8) the total set of constraints of the theory
becomes

&1=9y1=Io~0 (4.9a)
£ = Yy = [T1 + Ty — e(TT + 1) + €316] ~ 0 (4.9b)
&3 = Y3 =[01E + &(T1 + 019 — 10)] = O (4.9c)
E2= 5, =-00~0 (4.9d)
&= 9 =[Ao+ AL — (IT + I1p) + &(IT + 019)] ~ O (4.9¢)

The matrix of PBs of the constraings namely,Ns(z, Z): = {£,(2), £5(Z)}p, is
then calculated. The nonvanishing matrix elements of the mbligiXz, z') are

Nis = —Ng51 = —8(2 — Z/) (4103)
N2 = Na3 = 2€°9,8(z — 2) (4.10b)
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No3 = Nap = —2€%9,8(z — 2) (4.10c)
Nos = Nsp = (262 — 1)0,8(z — Z) (4.10d)
Nzg = Nz = —0318(z — Z) (4.10e)
N3s = Ns3 = —e(2e — 1)0:8(z — Z) (4.10f)
Nis = Nsg = +0318(z — Z) (4.109)
Nss = 2e(e — 1)3:18(z — Z) (4.10h)

The matrix N, is seen to be nonsingular and therefore its inverse exists. The
nonvanishing elements of the inverse of the maltjy (i.e., the elements of the
matrix (N~1) o are

(N"Y11 = (1/26%)918(z — 2) (4.11a)
(N 12 = —(N)z2 = (1/26)8(z — 2) (4.11b)
(N Diz=—-(N"Na=8(z—2) (4.11c)
(N D= (N = —(1—e)s(z—2) (4.11d)
(N s =—(N"Hs1 = 8(z— 2) (4.11e)
(N a2 = (1/4€%) € (z— 2) (4.11f)
(N0 = (N Do = — (%) c(z-72) (.119)
(N Daa=(N"Ngz=— (%) €(z-2) (4.11h)
with
/N(x, 2IN7Y(z, y)dz= 15,55(x — ) (4.12)

Heree(z — Z) is a step function defined as
.|+, @-2)>0
«(z-2:= {—1, @z-2)< 0
Finally, the nonvanishing equal-time commutators of the Gl theory described by
<" under the gauge (4.8) are obtained as

(2.9)

(900, T = S15(x ) (4.132)

(A0, T = S25(x =) (4.130)
[A1(9, )] = i5(x ) (4.130)
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(Ao, TI(Y)] = o2 018(x — Y) (4.130)
(A, E)] = ~i5(x—y) (@.13¢)
[$(), B = e(x — V) (4.130)
(900, ALYl = S50~ Y) (4.139)
[$0. Ao(Y)] = 5 5(x — Y) (4.13n)
M09, A = (5 ) 290 =) (4.13)
1100, As)] = (5 ) 250 =) (413)
1000, As)] = (5 ) 230 =) (4.13)
(1109, T = Sns(x ) (4.13)
609, 101 = () 36x = ) (@.13m)
[0 Ta9)] = (5 Jiox ) (@.130)
1A o] = (* 5 Jiudtx ) (4.130)
(609, oY)l = 25(x — ) (@.13p)
(A, 69)) = 2i6(x ~ ) (4.130)
(TG0, o ()] = —5013(x — ) (4.131)
(11,9, T (V)] = Sr3(x —y) (4.135)

Following the squence of reasoning offered in (Falck and Kramer, 1987;
Kulshreshtha, 1998; Kulshreshtbaal,, 1993a, 1994a,b,c), it is easy to see that
(4.13) together witho7! (4.3) under the gauge (4.8) reproduce precisely the quan-
tum system described by'N (2.1) (Falck and Kramer, 1987). The gauge (4.8)
translates the Gl version of the theory describedfyinto the GNI one described

by <N. A comparision of (2.8) and (4.13) reveals that (4.13a)—(4.13l) coincide
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completely with (2.8) as they should. The additional commutators appearing in
(4.13) (viz., (4.13m)—(4.13s)) express merely the dependengé@ndIl,. Infact,
the physical Hilbert spaces of the two theories'(and <N) are the same. The
addition of the Stueckelberg ternv(®) to the theory (i.e., toZ'N) enlarges only
the unphysical part of the full Hilbert space of the theary)!, without modifying
the physical content of the theory. The Stueckelberg fielidelf, in fact, repre-
sents only an unphysical degree of freedom and correspondingly the physics of
the theories with and without the Stueckelberg term remains the same (Falck and
Kramer, 1987).

For the latter use (in the next section), for considering the BRST formulation
of the gauge-invariant theory described By, we convert the total Hamiltonian
density =} into the first-order Langrangian density

710 = M(30¢) + E(d0A1) + Mo(3oA0) + My (300) + TMu(dou)
+ Iy (dov) — 74 (4.14a)

= | T1(606) + E@0) + T(ao) + M@ov) — 5(E2 + 17+ (@16

— E(31A0) + &(Ag — A))(TT + d1) — 26° A7 — %(819)2
— (e — 1)(316)(010) + (1 + 26)(316)" — €(Ao — A1)d16 — eT1d:0
— 4€? A1010 — (3p0)(IT — eIl — ed1¢ + eale)} (4.14b)
The generator of the LVGT is the charge operator of the theory:
J0 = fjodx (4.15a)
i° = [(018)(B0A1 — 91A0) — Bl€dod + (€ — € — (€% + €)d16

+ €014 + €4(Ao — A1)]] (4.15b)

The current operator of the theory is

It = fjldx (4.16a)
it = [BI(BE? — €)310 + (€% — €)dof + edog + €d1¢p + €°Ag + 3* Af]
— (30B)(30A1 — 91A0)] (4.16b)

The divergence of the vector current density, namgly/* is therefore seen to
vanish, implying that the theory possesses at the classical level a local vector
gauge symmetry (LVGS).



1786 Kulshreshtha

4.2. The Operator Solution

In this section, we obtain the operator solution (Floreanini and Jackiw, 1987;
Harada, 1990a,b; Harada and Isutsui, 1988; Kiral,, 1990, 1991, 1992) of the
Gl theory (3.2) under the gaugk (4.8).

Fromthe constraints (4.2) and (4.6) of the Gl theory (3.2), we chppEe Ay,
andE as the independent variables (IVs) of the theory and the remaining (depen-
dent) variables (DVs) are expressed by these IVs as

Mo=0 (4.17a)
Ao=—A (4.17b)
My = —(I1 + E) (4.17¢)

The nonvanishing equal-time (canonical as well as noncanonical) commutation
relations of the theory under the gauge (4.8) are given by (4.13). The reduced
Hamiltonian density}, of the theory (3.2) (obtained by implementing the con-
straints of the theory strongly) expressed in terms of IVs could then be written
as

Hg = E(EZ + 1% 4 (918)° — E(91A1) + 2e A(TT + 019)) + 2e2Aﬂ (4.18)

The field equation derived from the Heisenberg equations are

dop = —i[p, Hy] = (IT + 2e AY) (4.19a)
I = —i[I1, Hy] = (01014 + 2e3;1 A1) (4.19b)
doAL = —i[A, Hy] = (E — 91 A) (4.19¢)
IE = —i[E, Hy] = [-0.E — 26(TT + d19) + 46?A1]  (4.19d)
where
Hy = / dx Hp (4.20)

is the reduced Hamiltonian of the theory. Now using (4.17)—(4.20), we obtain the
following equations:

O¢ = [—e(d, A" — €9, A))] (4.21a)
3 F = [—26? A" — (" + €")d,p] (4.21b)
[0, A" + €9, A] =0 (4.21¢)

The equations (Eg. (4.21)) are now solved and the most general solution of (4.21)
gives

¢ = [o —h] (4.22a)
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-1
A, = (%) [3,60 + €,00" % + 2€,0,3"h] (4.22b)
(O+m?o =0; m=2e| (4.22c)
th=0 (4.22d)

where the free fields andh are expressed in terms of the IV's as

o= |:—2ieEi| (4.23a)
h= ! E 4.23b
— |- 5E 9] (4.230)

Here the fields is a massive field and the fieldis a massless field as is evident
from (4.22). The two-dimensional (unequal-tinxg:# yp) commutation relations
involving the free field& andh are (withx = x*, y = y*)

[o0(x), s(Y)] = 1A —y;m?) (4.242)
[h(x), h(y)] =iD(x —y) =iA(x—y;0) (4.24b)

where
A(X —y;m?) = (2zi)7t / d2k €(ko)s (k% — m?) e 'kx (4.25a)
D(x—y)=A(x—y;0) (4.25b)
and the propagator foh,, is given by

iD (k) = [ d?x (0| T* A, (x)A,(0)|0) (4.26)

whereA,, (x) is defined by (4.22).

5. THE BRST FORMULATION OF THE GI THEORY
5.1. BRST Invariance

For the BRST formulation of the theory, we rewrite the Gl theory described
by <" as a quantum system that possesses the generalized gauge invariance called
BRST symmetry. For this, we enlarge the Hilbert space of our Gl theory and
introduce new anticommuting variableandc (which are grassmann numbers on
the classical level and operators in the quantized theory) and a commuting variable
b such that (Becchet al, 1974; Henneaux, 1985; Kulshreshtha, 1998, 2000;
Kulshreshthaet al, 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Kulshreshtha,
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2001, in press; Kulshreshtha and Muller-Kirsten, 1992; Nameshchaetsily,
1988; Tyutin, 1975)

8¢ = —C; §Ag = 00C, AL = 0:C; 80 = —C; Su = dpdoc  (5.1a)
Sv=—0oc SM =08E =25My=25My=38M,=58II,=0  (5.1b)
5c=0; dc=b; sb=0 (5.1c)

with the propert)é2 = 0. We then define a BRST-invariant function of the dynam-

ical varialgles to be a functiof(IT, Iy, E, Iy, Iy, I, g, ¢, Ag, A1, 0, b, c, C)
suchthat f = 0.

5.2. Gauge Fixing in the BRST Formalism

Performing gauge fixing in the BRST formalism implies adding to the first-
order Lagrangian density (4.14) a function that is trivially BRST-invariant (Becchi
et al, 1974; Henneaux, 1985; Kulshreshtha, 1998; Nameshchaisidy 1988;
Tyutin, 1975). We thus write the gauge-fixed quantum Lagrangian density (taking
e.g., a trivial BRST-invariant function as follows) (Becetial, 1974; Henneaux,
1985; Kulshreshtha, 1998; Nameshchanskgl., 1988; Tyutin, 1975):

. 1
ZgrsT = [H(aoqs) + E(d0A1) + My (3ou) + My(dov) — §(E2 + 112 + (310)%)

~ E(9180) + (A0 — A9)(IT + d19) — 26°A% - %(819)2

— (e— 1)(019)(310) + e(1 + 2€)(310)* — &(Ao — A1)d10
— el1910 — 4€? A1910 — (900)(IT — eIl — ed1¢p + €916)

N 1
+8|:C(30A0—A1—¢—319+§b>:|:| (52)
The last term in the above equation is the extra BRST-invariant gauge-fixing

term. Using the definition of we can rewrite gq; (With one integration by
parts) as

- 1
ZarsT = [H(aoqs) + E(d0A1) + My (dou) + My(dov) — E(E2 + 112 + (310)%)

— E(9180) + (Ao — A9)(IT + d19) — 26°A% - %(819)2

— (e— 1)(019)(310) + (1 + 2€)(310)* — &(Ao — A1)d10



Gauge-Invariant Chiral Schwinger Model With Faddeevian Regularization 1789

— el18:0 — 4€? A1910 — (3p0)(IT — eIl — ed1¢ + €d10)
+ 0 g+ 000 — oo+ A) — S0+ ()| (63
Proceeding classically, the Euler—Lagrange equatiob feads
b=¢ + (010 — doAd) + A1 (5.4)
Also, the requiremenib = 0 (cf. (5.1)) implies
Sb=(5¢ + 8010 — 8dpAc+8A) =0 (5.5)
which in turn implies
—3pdoC = C (5.6)

The above equation is also an Euler—Lagrange equation obtained by the variation
of Zgrsr With respect ta. In introducing the momenta we have to be careful in
defining those for the fermionic variables. Thus we define the bosonic momenta
in the usual way so that

0%
M= —BRST _ 5.7
EREICY &7

but the fermionic momenta are defined using the directional derivatives such that
(Becchiet al,, 1974; Henneaux, 1985; Kulshreshtha, 1998; Nameshchasky
1988; Tyutin, 1975):

< -

_ 3
doC; g = ——
° © 7 3(300)

implying that the variable canonically conjugatectts doc and the variable con-
jugate toc is doc. In constructing the quantum Hamiltonian density, s from

the Lagrangian density in the usual way, we remember that the former has to
be Hermitian. Accordingly, we have (Becchi al, 1974; Henneaux, 1985;
Kulshreshtha, 1998; Nameshchansgkyal., 1988; Tyutin, 1975)

Mg = Sopsr=dC  (5.8)

< ——
BRSTB(BOC)

Mrst = [M1(30¢) + E(doA1) + Mo(d0Ao) + I (d08) + My (dou) + Iy (doV)

+ I¢(30C) + (3oC) g — ZgrsTl

- [%(EZ + 1% + (01)%) + E(91A0) — (1 + 10)(Ao — Aq)
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+ 267 A2 + %(819)2 + (e — 1)(31¢)(8:0) — e(1 + 2€)(0:0)?
+ €(010)(Ag — A1) + eT1010 + 4€? Ay(316) + To(p + 010 + A1)
- M3 nenes EC} (5.9)

We can check the consistency of (5.8) with (5.9) by looking at Hamilton’s equations
for the fermionic variables

- -

J = o 9
aoC = a—l_lc O/KBRST’ 30C = O/?/BRSTB—I_IE (510)
thus we see that
o S .= 0
800 = 8—1_[(: o//‘/BRST = Hc_, 800 = @//./BRSTa—l_[E = HC (511)

is in agreement with (5.8). For the operators, doc, anddoC, one needs to specify

the anticommutation relations éfc with ¢ or of doc with ¢, but not ofc with c. In
generalgc andc are independent canonical variables and one assumes that (Becchi
et al, 1974; Henneaux, 1985; Kulshreshtha, 1998; Nameshchaisidy 1988;
Tyutin, 1975)

{M¢, Mg} = {c,c} =0 (5.12a)
%{6, ¢} =0 or {doC, c} = —{dgc, C} (5.12b)

where{,} means an anticommutator. We thus see that the anticommutators in
(5.12b) are nontrivial and need to be fixed. To fix these, we demand Haaisfy

the Heisenberg equation (Beceial., 1974; Henneaux, 1985; Kulshreshtha, 1998;
Nameshchanskgt al., 1988; Tyutin, 1975):

[C, Hgrstl = 100C (5.13)
and using the property’ = ¢ = 0 one obtains
[c, grstl = {0C, C}doC (5.14)
Equations (5.12)—(5.14) then imply:
{doC, €} = —{doC, C} = i (5.15)

Here the minus sign in the above equation implies the existence of states with
negative norm in the space of state vectors of the theory (Bestchi, 1974,
Henneaux, 1985; Kulshreshtha, 1998; Nameshchagtsidy 1988; Tyutin, 1975).
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The properties obeyed by fermionic variables could thus be summarized in a
single equation (for further discussions) as

2

c® =% = {C, ¢} = {doC, doc} = 0; {doC, C} =i = —{dqC, C} (5.16)

5.3. The BRST Charge Operator

The BRST charge operat@) is the generator of the BRST transformations
(5.1). It is nilpotent and satisfie®? = 0. It mixes operators that satisfy Bose
and Fermi statistics. According to its conventional definition, its commutators
with Bose operators and its anticommutators with Fermi operators for the present
theory satisfy

[I1, Q] = —€(31€ — 9p01C) (5.17a)
[TTs, Q] = +€(01C + dod1C) (5.17b)
[¢, Q] = —(e—1)dc—ec [0, Q] = +doC (5.17c)
[A1, Q] = +81¢;  [Ao, Q] = +doC (5.17d)
{C, Q) = [eIl + ed1¢p — €310 — g — 1 — 1] (5.17¢)
{00C, Q} = [€310 — 31E — e(TT + 919)] (5.17f)

All other commutators and anticommutators involviQganish. In view of (5.17),
the BRST charge operator of the present gauge invariant theory can be written as

Q= / AX(ic[onE + (T + d1) — 0]
—1 30C[H0 + IT+ Iy — e(H + 81¢) + 9319]} (518)

This equation implies that the set of states satisfying the conditions (4.2) and (4.6)
belongs to the dynamically stable subspace of stadtgsatisfyingQ|v) = 0, i.e.,
it belongs to the set of BRST-invariant states.

To understand the condition needed for recovering the physical states of
the theory we rewrite the operatarandc in terms of fermionic annihilation and
creation operators. For this purpose we consider (5.6). The solution of this equation
(Eq. (5.6)) gives the Heisenberg operat(t) (and correspondinglg(t)) as

ct)=€'B+eD; c(t)=e "Bl +€'Df (5.19)

which at timet = 0 imply

c=c(0)= B+ D; c=c(0)= B 4+ D' (5.20a)
¢=¢0)=i(B—D); c=c(0)=—i(Bf — DY) (5.20b)
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By imposing the conditions (5.16), we now obtain the equations

B2+ (B, D}+ D?=B™ 4+ {B,D'}+ D2 =0 (5.21a)
(B, BT} +{D, D'} + (B, D} +{Bf,D} =0 (5.21b)
(B, BT} +{D, D'} — {B, Df} — {Bf, D} =0 (5.21c)
{B, B} —{D, D'} — {B, D'} + {D, Bf} = -1 (5.21d)
(B,B"} —{D, D'} + (B, D'} - {D, BT} = -1 (5.21e)

with the solution

B2=D?=B"2=D"=0 (5.22a)
{B,D} ={B"+D}={B,D'}={Bf, D} =0 (5.22b)
(BT, B}=—%; {DT,D}=% (5.22¢)
We now let|0) denote the fermionic vacuum for which
B|0) = D|0) =0 (5.23)
Defining|0) to have norm one, (5.22c) implies
(0|BB|0) = —%; (0|DDT|0) = +% (5.24)
so that
Bfl0)£0; D'0)#£0 (5.25)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
M arst IS, however, irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators

M grst = %(E2 + 1% + (910)%) + Ed1 A0 — e(TT + 919)(Ao — Ay) + 267 A
£ 6 + (e~ 1)(019)(3n0) — (1 + 26)(116)

+ €(310)(Ao — A1) + el1d10 + 46° A1310 + To(¢p + 10 + A1)

1 .
- Eng +2(B'B+ DD) (5.26)
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and the BRST charge operatQris

Q= /dx{i B[(01E + €(IT + d1¢) — €3160) — i (T + IT + Iy

— e(IT + 91¢) + €310)] + i D[(LE + e(I1 + 91¢) — €016)
+i(ITg + IT + Iy — e(IT + 31¢) + €9816)]} (5.27)

Now becaus®|y) = 0, the set of states annihilated Qycontains not only the set
of states for which (4.2) and (4.6) hold but also additional states for wiiigh =
D|y) = 0 and for which (4.2), and (4.6) do not hold. However, the Hamiltonian
is also invariant under the anti-BRST transformation given by

Son

¢ =C; ng = —306; gAl = —316; 39 = E, SU = —0gdgC (5288.)
3V = dC, O =3E =8lg=0dIly =8Iy, =611, =0  (5.28b)
3=0; dc=-b sb=0 (5.28¢)

with the generator or anti-BRST charge

Q= /dx{—iE[(alE + &(T1 + 91¢) — €3160] +13oC[ o + T + Ty
— e(IT + 91¢) + €0:6]}
= /dx{—i BT[(01E + e(IT + 01¢) — €16) — i (TTo + T + Ty — e(IT + 01¢)

+ €010)] — iDT[(31E + (T + 91) — €316) + i (TTp + IT + I,
— e(TT + 819) + €010)]} (5.29)

We also have

90Q = [Q, Hers] =0 (5.30a)

30Q = [Q, Hrs1] =0 (5.30b)
with

Herst = / dx A grst (5.30c)

and we further impose the dual condition that bQtand (5 annihilate physical
states, implying that

Qly)=0 and Qly)=0 (5.31)

The states for which (4.2) and (4.6) hold strongly satisfy both of these conditions
and, in fact, are the only states satisfying both conditions, since although with
(5.22)

2(B'B+ D'D) = —2(BB' + DD') (5.32)
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there are no states of this operator wgh/0) = 0 andDf|0) = 0 (cf. 5.25)), and
hence no free eigenstates of the fermionic patigést which are annihilated by
each ofB, BT, D, DT. Thus the only states satisfying (5.31) are those satisfying
the constraints (4.2) and (4.6). Further, the states for which (4.2) and (4.6) satisfy
both of these conditions (5.31) and, in fact, are the only states satisfying both of
these conditions (5.31), because in view of (5.20) one cannot have simultaneously
¢, doc andc, doC, applied toyr) to give zero. Thus the only states satisfying (5.31)
are those that satisfy the constraints of the theory (4.2) and (4.6) and they belong
to the set of BRST-invariant and anti-BRST-invariant states.

Alternatively, in terms of fermionic annihilation and creation operators, the
condition Q|y) = 0 implies that the set of states annihilated @ycontains not
only the states for which (4.2) and (4.6) holds but also additional states for which
oY) # 0, [IT 4 Iy — e(IT + d1¢) + €d10]|y) # 0, and p1E + e(IT + 919 —
010)]|¥) # 0. HoweverQ|y) = 0 guarantees that the set of states annihilated
by Q contains only the states for whidfig|y) = O, [IT + Iy — &(IT + 01¢) +
€d10]|¥) = 0,and pLE + e(IT + 814 — 3:160)] ) = 0, simply becausB|vy) # 0
andDT|y) # 0. Thus in this alternative way we also see that the states satisfying
Qly) = Qly) = 0(i.e., satisfying (5.31)) are only those states that satisfy the con-
straints of the theory and also that these states belong to the set of BRST-invariant
and anti-BRST-invariant states.

6. CONCLUSIONS AND DISCUSSIONS

In this work we have constructed a Gl theory corresponding to a GNI-CSM
with the Faddeevian regularization due to Mitra (Mitra, 1992; Mukhopadhyay
and Mitra, 1995a,b) through the so-called Stueckelberg term (Kulshreshtha, 1998;
Kulshreshthaet al,, 1993a, 1994a,b,c; Stueckelberg, 1941, 1957), the addition of
which to the action of the original GNI theory restores the gauge-invariance to the
theory. The canonical structure, constrained dynamics, and the Hamiltonian and
BRST quantization and the operator solutions of this newly constructed Gl theory
obtained by the inclusion of the Stueckelberg term to the action of the GNI theory
have been studied in the conventional form of dynamics on the hyperptéres
constant, called the instant form of dynamics (Dirac, 1949). This theory has been
studied in a recent paper (Kulshreshtha, 1998) on the hyperplanes of the light front
(x° + x1) = constant, describing the front form of dynamics.

The original theorya'la Mitra (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b) is seen to be GNI in both the forms of dynamics, namely, in the in-
stant form, as seen in the present work, as well as in the light-front frame (or
the FF) (Kulshreshtha, 1998). In both the cases, the theory possesstsof
second-class constraints (Kulshreshtha, 1998; Mitra, 1992; Mukhopadhyay and
Mitra, 1995a,b) and has a nonzero divergence of the vector gauge current im-
plying that the theory does not have a local vector gauge symmetry (or that it
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is gauge-anomalous) in both the forms (IF and FF) of dynamics (Kulshreshtha,
1998; Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). The FF theory has been
studied in Kulshreshtha (1998), where we have constructed a Gl theory from the
corresponding GNI theory through the Stueckelberg term (Kulshreshtha, 1998).
The Hamiltonian and BRST quantizations of this FF—GI theory have also been
studied in Kulshreshtha (1998). The physical content of the original GNI theory in
FF has also been recovered from that of the FF-GI theory under a special choice of
gauge in Kulshreshtha (1998). In the present work, which is in the IF of dynamics,
we see that the original GNI theory due to Mitra (Mitra, 1992; Mukhopadhyay
and Mitra, 1995a,b) possesses a set of three second-class constraints that make
the theory gauge anomalous (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b)
(cf. Section 2). On the other hand, the Gl theory as constructed in Section 3
through the Stueckelberg term is seen to possess a set of three first-class con-
straints. It is also seen to have a zero divergence for the vector gauge current,
signifying that the theory is no longer gauge-anomalous and also that the vector
gauge symmetry has been restored to the theory (cf. Section 3). The Hamiltonian
guantization and the operator solutions of the newly constructed Gl theory have
been studied under a special choice of gauge given by (4.8). The total set of
constraints (given by (4.9)) of this new Gl theory under the gauge (4.8) clearly
becomes second class and the Dirac quantization of this Gl theory could therefore
be achieved under the gauge (4.8). The results of the Hamiltonian quantization of
the Gl theory (3.2) under the gauge (4.8) are expressed in terms of the nonvan-
ishing equal-time commutators (4.13). Further, it is easy to see that the Gl theory
7' (3.2) with (4.13) and= (4.3) under the gauge (4.8) reproduce precisely
the quantum system described By (2.1) (Falck and Kramer, 1987). The gauge
(4.8) thus translates the Gl version of the theory described/bynto the GNI

one described by7N (Falck and Kramer, 1987). Also, as observed in Section 3,
the physical Hilbert spaces of the theories and N are the same, because

the Stueckelberg field represents only an unphysical degree of freedom (Falck
and Kramer, 1987). Also, in the above Hamiltonian quantization of the theory
under the gauge-fixing conditions one necessarily destroys the gauge invariance
of the theory by fixing the gauge. In view of this, to achieve the quantization
of the above Gl theory such that the gauge invariance of the theory is main-
tained even under gauge-fixing, we go to a more generalized procedure called the
BRST quantization (Becclet al, 1974; Henneaux, 1985; Kulshreshtha, 2000;
Kulshreshthaet al, 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Kulshreshtha,
2001; Kulshreshtha and Mueller-Kirsten, 1992; Nameshchamskgl., 1988;
Tyutin, 1975). The BRST quantization of the present Gl theory (3.2) constructed in
Section 3 (Corresponding to the GNI theory (2.1)) under some specific gauge
choice has finally been studied in Section 5. In this procedure, the BRST-quantized
theory continues to possess the generalized gauge invariance called the BRST
symmetry even under the BRST gauge fixing (cf. Section 5).
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