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Gauge-Invariant Chiral Schwinger Model With
Faddeevian Regularization: Stueckelberg Term,
Operator Solution, and Hamiltonian
and BRST Formulations

Usha Kulshreshtha1,2

A chiral Schwinger model with the Faddeevian regularization `a la Mitra is studied in
one-space one-time dimension in the conventional form of dynamics (on the hyperplanes
x0 = constant) called the “Instant-Form” (IF) dynamics. The original IF theory is seen to
be gauge-noninvariant (GNI). Corresponding to this GNI model, a gauge-invariant (GI)
theory is constructed through the so-called Stueckelberg term. The operator solution
and the Hamiltonian and BRST formulations of the resulting GI theory, obtained by
the inclusion of the Stueckelberg term in the action of the original GNI theory, are then
investigated with some specific gauge choices. The physical contents of the original GNI
theory are also recovered from the newly constructed GI theory under a special gauge.

1. INTRODUCTION

The Schwinger model describing electrodynamics in one-space one-time
((1+ 1)-) dimension with massless fermions and its chiral versions called the
chiral Schwinger models (CSMs) have been of a very wide interest in recent
years (Boyanovski, 1987; Falck and Kramer, 1987; Floreanini and Jackiw,
1987; Girottiet al., 1986; Harada, 1990a,b; Harada and Tsutsui, 1988; Jackiw
and Rajaraman, 1985; Kimet al., 1990, 1991, 1992; Kulshreshtha, 2000;
Kulshreshthaet al., 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Kulshreshtha,
1998, in press; Kulshreshtha and Mueller-Kirsten, 1992; Mitra, 1992; Mitra and
Rajaraman, 1988; Mukhopadhyay and Mitra, 1995, 1995a,b; Rajaraman, 1985;
Schwinger, 1962). The CSMs describe a massless Dirac fieldψ(x, t) in (1+ 1)-
dimension with only one of its chiral components coupled to aU (1) vector gauge
field Aµ(x, t) (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962).
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One of the remarkable achievements of the studies of such theories has been
the development of the fermion–boson correspondence in two-dimensional quan-
tum field theories. The other important achievement has been in the field of un-
derstanding the phenomena of gauge-anomalies and the gauge-anomalous field
theories (Boyanovski, 1987; Falck and Kramer, 1987; Floreanini and Jackiw,
1987; Girotti et al., 1986; Harada, 1990a,b; Harada and Isutsui, 1988;
Jackiw and Rajaraman, 1985; Kimet al., 1990, 1991, 1992; Kulshreshtha, 2000;
Kulshreshthaet al., 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Kulshreshtha,
2001, in press; Kulshreshtha and Mueller-Kirsten, 1992; Mitra, 1992; Mitra and
Rajaraman, 1988; Mukhopadhyay and Mitra, 1995, 1995a,b; Rajaraman, 1985;
Schwinger, 1962).

Jackiw and Rajaraman (Jackiw and Rajaraman, 1985; Rajaraman, 1985;
Schwinger, 1962), in particular, have considered a gauge-anomalous CSM (Jackiw
and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962). By studying the field
equations and propagator obtained from the effective gauge field action, they con-
cluded that the theory was not gauge-invariant (GI) but was unitary and amenable to
particle interpretation (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger,
1962). They also found that the vector gauge boson necessarily acquires a mass
when consistency and unitarity are demanded (Jackiw and Rajaraman, 1985;
Rajaraman, 1985; Schwinger, 1962). The class of regularizations that have been
considered involve the dimensionless Jackiw–Rajaraman (JR) regularization pa-
rameter a (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962);
the JR-CSM (Boyanovski, 1987; Falck and Kramer, 1987; Floreanini and Jackiw,
1987; Girottiet al., 1986; Harada, 1990a,b; Harada and Isutsui, 1988; Jackiw and
Rajaraman, 1985; Kimet al., 1990, 1991, 1992; Kulshreshthaet al., 1993a,b,c,
1994a,b,c, 1999; Kulshreshtha and Mueller-Kirsten, 1992; Mitra and Rajaraman,
1988; Rajaraman, 1985; Schwinger, 1962) is found to admit exact solutions in a
positive metric Hilbert space respecting unitarity fora ≥ 1, for which the theory
is sensible (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962).
In fact, the model is seen to yield a sensible theory for a class of regularizations
(Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962). The spectrum
of the theory depends on the regularization in a crucial way and it is seen to contain,
for a > 1, a massive photon in addition to a massless fermion, and fora = 1, only
a massless fermion (Jackiw and Rajaraman, 1985; Rajaraman, 1985; Schwinger,
1962).

A new regularization that does not belong to the above class has recently
been considered by Mitra (Mitra, 1992). With this regularization (Mitra, 1992),
the photon is once again massive and the massless fermion present in the theory
has (in contrast to the JR regularization) a chirality opposite to that entering the
interaction with the electromagnetic field (Mitra, 1992). This regularization has
been called by Mitra (Mitra, 1992) as the Faddeevian regularization (Mitra, 1992;
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Mukhopadhyay and Mitra, 1995a,b). The original theory (`a la Mitra, Mitra, 1992)
(Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b), which is in accordance with
the Faddeev’s picture (Faddeev, 1984; Faddeev and Shatashvili, 1986) of gauge-
anomalous theories, has a masslike term for the vector gauge bosonAµ different
from those of the class of models (called JR-CMS) studied earlier (Boyanovski,
1987; Falck and Kramer, 1987; Girottiet al., 1986; Jackiw and Rajaraman, 1985;
Kulshreshthaet al., 1993a, 1994a,b; Mitra and Rajaraman, 1988; Rajaraman, 1985;
Schwinger, 1962) and may be taken as a signature of new regularization (Mitra,
1992; Mukhopadhyay and Mitra, 1995a,b).

This theory in contrast with the JR-CSM is seen to possess a self-dual boson
that could also be thought of as a chiral fermion. The theory possesses a vector
gauge anomaly and lacks the gauge invariance. This, in fact, is a consequence of
the Faddeev’s anomaly (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b) in the
theory (where the matrix of the poisson brackets of the constraints of the theory be-
comes nonsingular because of the nonvanishing poisson bracket of the Gauss law
constraint of the theory with itself, called the Faddeev’s anomaly (Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b)), which leads to the breaking of the vec-
tor gauge symmetry of the theory, making it gauge-anomalous. The Hamiltonian
formulation (Dirac, 1950) of this theory has been studied in the “Instant Form”
(IF) (Dirac, 1949) by Mitra ((Mitra, 1992), where the theory is seen to be gauge-
noninvariant (GNI), possessing a set of three second-class constraints (Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b).

In a recent paper (Kulshreshtha, 1998), we have studied this theory on the
hyperplanes of the light front (x0+ x1 = constant (Dirac, 1949)) describing the
“Front Form” (FF) of dynamics (Kulshreshtha, 1998). In the present work we study
this theory in the conventional form of dynamics on the hyperplanes (x0 = constant
(Dirac, 1949)), called the instant-form theory, derived from the original GNI
theory (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b) through the so-called
Stueckelberg term (Kulshreshtha, 1998; Kulshreshthaet al., 1993a, 1994a,b,c;
Stueckelberg, 1941, 1957): the addition of which to the action of the GNI theory
restores the gauge symmetry of the theory. The Hamiltonian and Becchi, Rouet,
Stora, and Tyutin (BRST) formulations (Becchiet al., 1974; Henneaux, 1985;
Kulshreshtha, 1998, in press; Kulshreshthaet al., 1993a,b,c, 1994a,b,c, 1999;
Kulshreshtha and Kulshreshtha, 2001, in press; Kulshreshtha and Mueller-
Kirsten, 1992; Nameshchanskyet al., 1988; Tyutin, 1975) and the operator so-
lutions of this newly constructed GI theory are then studied under some specific
gauge choices. The physical contents of the original GNI theory are also recovered
under a special choice of gauge (Falck and Kramer, 1987), and the equivalence of
the quantized GI and GNI theories is established (Falck and Kramer, 1987).

In the usual Hamiltonian formulation of a GI theory under some gauge-
fixing conditions, one necessarily destroys the gauge invariance of the theory
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by fixing the gauge (which converts a set of first-class constraints into a set
of second-order constraints, implying a breaking of gauge invariance under the
gauge fixing.) To achieve the quantization of a GI theory such that the gauge
invariance of the theory is maintained even under gauge fixing, one goes to a
more generalized procedure called the BRST formulation (Becchiet al., 1974;
Henneaux, 1985; Kulshreshtha, 2000; Kulshreshthaet al., 1993a,b,c, 1994a,b,c,
1999; Kulshreshtha and Kulshreshtha, 2001, in press; Kulshreshtha and Mueller-
Kirsten, 1992; Nameshchanskyet al., 1988; Tyutin, 1975). In the BRST formu-
lation of a GI theory, the theory is rewritten as a quantum system that possesses
a generalized gauge invariance called the BRST symmetry. For this, one enlarges
the Hilbert space of the GI theory and replaces the notion of the gauge trans-
formation, which shifts operators byc-number of the gauge functions, namely
by a BRST transformation, which mixes operators having different statistics.
In view of this, one introduces new anticommuting variablesc and c̄ called
the Faddeev–Popov ghost and antighost fields, which are Grassmann numbers
on the classical level and operators in the quantized theory, and a commuting
variablebcalled the Nakanishi–Lautrup field (Becchiet al., 1974; Henneaux, 1985;
Kulshreshtha, 2000; Kulshreshthaet al., 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha
and Kulshreshtha, 2001; Kulshreshtha and Mueller-Kirsten, 1992; Nameshchansky
et al., 1988; Tyutin, 1975). In the BRST formulation, one thus embeds a GI theory
into a BRST-invariant system, and quantum Hamiltonian of the system (which
includes the gauge-fixing contribution) commutes with the BRST charge operator
Q as well as with the anti-BRST charge operatorQ̄, the new symmetry of the
quantum system (the BRST symmetry) that replaces the gauge invariance is main-
tained (even under gauge fixing) and hence projecting any state onto the sector
of BRST- and anti-BRST-invariant states yields a theory that is isomorphic to the
original GI theory. The unitarity and consistency of the BRST-invariant theory de-
scribed by the gauge-fixed quantum Lagrangian is guaranteed by the conservation
and nilpotency of the BRST chargeQ.

The plan of the paper is as follows: In Section 2, we briefly recapitulate
the CSM with the Faddeevian regularization (Kulshreshtha, 1998; Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b). In Section 3, we construct the GI theory cor-
responding to the original GNI theory (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b) through the Stueckelberg term (Stueckelberg, 1941, 1957). The
Hamiltonian formulation and the operator solutions of this newly constructed
GI theory (obtained by the inclusion of the Stueckelberg term in the action of
the original GNI theory) are studied in Section 4, where the contents of the orig-
inal GNI theory are also recovered from that of the GI theory under a special
choice of gauge (Falck and Kramer 1987). Finally, the BRST formulation of the
GI theory is studied in Section 5, and the conclusions and discussions are given in
Section 6.
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2. THE GNI THEORY À LA MITRA (MITRA, 1992; MUKHOPADHYAY
AND MITRA, 1995A,B)

In this section, we briefly recapitulate the basics of the GNI-CSM with the
Faddeevian regularization due to Mitra (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b) in one-space one-time dimension. In Kulshreshtha (1998), this theory
has been studied on the hyperplanes of the “Light-Front” (x0+ x1 = constant),
describing the “Front Form” of dynamics (Dirac, 1949). In the present work we
study this theory in the conventional form of dynamics on the hyperplanes (x0 =
constant), called the “Instant Form” of dynamics (Dirac, 1949). The theory in
the instant form (Dirac, 1949) is described by the bosonized action (Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b):

SN =
∫

L Ndx0 dx1 (2.1a)

L N =
[

1

2
(∂µφ)(∂µφ)+ e(gµν − εµν)(∂µφ)Aν − 1

4
FµνFµν

+
{

1

2
e2AµMµνAν

}]
(2.1b)

=
[

1

2
(φ̊

2− φ′2)+ e(φ̊ + φ′)(A0− A1)+ 1

2
(Å1− A′0)2

+
{

1

2
e2(A0− A1)2− 2e2A2

1

}]
(2.1c)

gµν =
[+1 0

0 −1

]
Mµν =

[
1 −1
−1 −3

]
εµν =

[
0 +1
−1 0

]
(2.1d)

The overdots and primes denote time and space derivatives respectively. The first
term in (2.1) represents (Mitra, 1992) a massless boson that is equivalent to a mass-
less fermion in two dimensions. The second term represents the chiral coupling of
this fermion to the electromagnetic fieldAµ. The third term is the kinetic energy
term of the electromagentic field. The last term in (2.1), namely,

L m =
1

2
e2Aµ MµνAν (2.2a)

= 1

2
e2(A0− A1)2− 2e2 A2

1 (2.2b)

is the mass term for the electromagnetic fieldAµ and has been derived explicitly
in Mukhopadhyay and Mitra (1995a), using the Pauli–Villars method of regular-
ization, where the effective actionSN has been obtained with this unconventional
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mass-term (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). It corresponds to a
new class of regularization called the Faddeevian regularization (Faddeev, 1984;
Faddeev and Shatashvili, 1986); this theory is in accordance with the Faddeev’s pic-
ture of gauge-anomalous theories (Faddeev, 1984; Faddeev and Shatashvili, 1986;
Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). It is important to recall that in
a true or bonafide GI theory the matrix of the poisson brackets (PBs) of the con-
straints is a null matrix. Faddeev (Faddeev, 1984; Faddeev and Shatashvili, 1986)
visualised a situation where anomalies make the PB of the Gauss law constraint
with itself nonvanishing. If this happens, the set of constraints becomes second-
class and the gauge invariance of the theory gets lost (Mitra, 1992; Faddeev, 1984;
Faddeev and Shatashvili, 1986). Faddeev argued that there would be more physical
degrees of freedom in such a theory than in the case of GI theories because no
gauge-fixing conditions would be needed to quantize the theory. In the present CSM
with the new (so-called Faddeevian) regularization considered in previous works
(Faddeev, 1984; Faddeev and Shatashvili, 1986; Kulshreshtha, 1998; Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b), the Faddeev’s mechanism works: namely,
the constraints become second-class through an anomaly in the PB of the Gauss
law constraint with itself (Mitra, 1992). It may be worthwhile to record the mass
term for the vector gauge fieldAµ, for the JR-CSM (Jackiw and Rajaraman, 1985;
Rajaraman, 1985; Schwinger, 1962)

∼
L m =

1

2
a e2Aµ Aµ (2.3)

It corresponds to the so-called JR or standard regularization (Jackiw and
Rajaraman, 1985; Rajaraman, 1985; Schwinger, 1962), wherea is the regular-
ization parameter introduced by JR. The mass term forAµ, in fact, arises from the
regularization ambiguities associated with the definition of current and contains
the fermionic one-loop effects. It is thus obvious that the present theory (with
the Faddeevian regularization) (Faddeev, 1984; Faddeev and Shatashvili, 1986;
Kulshreshtha, 1998; Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b) corresponds
to a regularization different from those involved in the class of JR-CSMs
(Boyanovski, 1987; Falck and Kramer, 1987; Girottiet al., 1986; Jackiw and
Rajaraman, 1985; Kulshreshthaet al., 1993a, 1994a,b; Mitra and Rajaraman, 1988;
Rajaraman, 1985; Schwinger, 1962) and the mass termL m (2.2) is regarded here
as a signature of the new regularization (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b).

Further, the mass-like term for the vector gauge fieldAµ in L N (namelyL m
(2.2)) does not have the Lorentz invariance and therefore the theory lacks manifest
Lorentz covariance. However, the Poincar´e generators of the theory all defined on
the constraints hypersurface are seen to satisfy the Poincar´e algebra (Mitra, 1992):[

P0
R, p1

R

] = 0 (2.4a)
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[
M10

R , P0
R

] = −i P1
R (2.4b)[

M10
R , P1

R

] = −i P0
R (2.4c)

whereP0
R(≡HR), P1

R(≡PR) andM10
R (≡MR) are the field operators corresponding

to the field energy or the Hamiltonian, field momentum, and the Lorentz-boost
generator of the theory (defined bySN or L N (2.1)) defined on the constraints
hypersurface (Mitra, 1992). In view of this, the theory defined byL N, despite
the lack of manifest Lorentz covariance, is seen to be implicitly Lorentz-invariant
(Mitra, 1992; Kulshreshtha, 1998).

Using the Euler–Lagrange field equations of motion obtained fromL N (2.1),
it is easy to see that the divergence of the vector gauge current for the theory defined
by L N does not vanish, implying that the theory possesses a vector gauge anomaly
or that the theory is GNI.

A study of the canonical structure of the theory reveals that it possesses
a set of three second-class constraints (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b):

Ä1 = 50 ≈ 0 (2.5a)

Ä2 = (∂1E + e5+ e ∂1φ) ≈ 0 (2.5b)

Ä3 = (A0+ A1) ≈ 0 (2.5c)

WhereÄ1 is a primary constraint andÄ2 andÄ3 are secondary constraints. Here
5,50, and E (≡51) are the momenta cononically conjugate respectively to
φ, A0, and A1. The matrix of the PBs of the constraintsÄi is seen to be non-
singular, implying that the set of constraintsÄi is second-class, reflecting a lack
of gauge-invariance in the theory and consequently the model describes a GNI or
gauge-anomalous theory (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). The
gauge symmetry, however, when present in a theory has many beneficial conse-
quences. It is rather well known that the addition of an appropriate Stueckelberg-/
Wess–Zumino-kind of a term to the action of a GNI theory possessing a set of
second-class constraints converts it into a GI theory possessing a set of first-class
constraints. Under some special choice of gauge, it is, however, possible to re-
cover the physical content of the GNI theory from the GI theory (Boyanovski,
1987; Girottiet al., 1986; Mitra and Rajaraman, 1988). In the next section, we
would construct a GI theory corresponding to the present GNI theory (described
by L N (2.1)) à la Mitra (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b).

Further, using the Hamilton’s equations of motion of the GNI theory that
preserve the constraints of the theory (2.5) in the course of time, one can see that
A1 satisfies the Klein–Gordon equation (Mitra, 1992)

(∂µ∂
µ + 4 e2)A1 = 0 (2.6)
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implying that the photon has a mass equal to 2|e|. Also, by defining a new fieldχ
as (Mitra, 1992; Mukhopadhyay and Mitra, 1995,a,b)

χ = φ + 1

2e
(∂0A1+ ∂1A1) (2.7)

It is seen that the fieldχ satisfies the antiduality condition (Kulshreshtha, 1998;
Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b):

∂0χ + ∂1χ = 0 (2.8)

implying thatχ is a self-dual field, and thereby implying that the theory con-
tains a chiral boson, which could be thought of as a chiral fermion (Mitra, 1992;
Mukhopadhyay and Mitra, 1995a,b). The fieldsφ, A0, andA1 could then be ex-
pressed in terms of the free massive scalar fieldA1 and the free self-dual bosonχ (or
equivalently a chiral fermion) (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b).
Thus the spectrum of the theory in this Faddeevian regularization is found to con-
tain a self-dual boson (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). This is
in contrast to the CSM with the JR regularization (i.e. the JR-CSM) (Boyanovski,
1987; Falck and Kramer, 1987; Girottiet al., 1986; Jackiw and Rajaraman, 1985;
Kulshreshthaet al., 1993a, 1994a,b; Mitra and Rajaraman, 1988; Rajaraman, 1985;
Schwinger, 1962) Also, for later purposes, it may be worthwhile to record the
nonvanishing equal-time commutators of this GNI theory obtained by the Dirac
quantization of the theory:

[φ(x),5(y)] = 3

2
i δ(x − y) (2.8a)

[ A1(x),5(y)] = −i

2e
δ(x − y) (2.8b)

[ A0(x),5(y)] = −i

2e
∂1δ(x − y) (2.8c)

[ A1(x), E(y)] = i δ(x − y) (2.8d)

[ A0(x), E(y)] = −i δ(x − y) (2.8e)

[φ(x), φ(y)] = +i

4
ε(x − y) (2.8f)

[φ(x), A1(y)] = −i

2e
δ(x − y) (2.8g)

[φ(x), A0(y)] = −i

2e
δ(x − y) (2.8h)

[ A1(x), A1(y)] = i

2e2
∂1δ(x − y) (2.8i)
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[ A1(x), A0(y)] = i

2e2
∂1δ(x − y) (2.8j)

[ A0(x), A0(y)] = i

2e2
∂1δ(x − y) (2.8k)

[5(x),5(y)] = i

2
∂1δ(x − y) (2.8l)

Hereε(x − y) is a step function defined as

ε(x − y) =
{+1, (x − y) > 0
−1, (x − y) < 0

(2.9)

2.1. The Theory in the Light-Front Frame

In a recent paper (Kulshreshtha, 1998) we have studied this theory in the light-
front (LF) frame, on the hyperplanes of the LF:

√
2x+ = (x0+ x1) = constant.

The main results of this work are briefly recapitulated here in this section. The the-
ory, described in the LF frame by the Lagrangian density (2.16), with
µ, ν = +,−, is seen to possess a set of three second-class constraints:

ρ1 = 5+ ≈ 0, ρ2 = [5− ∂−φ − 2eA+] ≈ 0 (2.10a)

ρ3 = [∂−5− − 2e2(A− − A+)] ≈ 0 (2.10b)

whereρ1 andρ2 are primary constraints andρ3 is a secondary Gauß law constraint
and5,5+, and5− are the canonical momenta conjugate respectively to the
fieldsφ, A−, andA+. The matrix of the PBs of these constraintsρi is nonsingular,
implying that the set ofρi is second-class and that the corresponding theory lacks
gauge invariance. An appropriate Stueckelberg term (ST) for this theory has been
calculated in Kulshreshtha (1998) and it reads as

LS = [(1− 2e+ 2e2)(∂+θ )(∂−θ )− (1− 2e)(∂+φ)(∂−θ )− (∂−θ )(∂−φ)

+ 2e(e− 1)A+(∂+θ )− e2(∂+θ )2− 2e2A−(∂+θ − ∂−θ )] (2.11)

whereθ is the Stueckelberg scalar field. The new theory obtained by the addition
of this ST (2.11) to the Lagrangian density (2.1b) of the GNI theory is seen to be
GI possessing a set of three first-class constraints (Kulshreshtha, 1998):

χ1 = 5+ ≈ 0, χ2 = [5− ∂−φ − 2eA+ + (1− 2e)∂−θ ] ≈ 0 (2.12a)

χ3 = [∂ 5− +5θ − (1− 2e)(∂ θ )+ ∂ φ + 2eA+] ≈ 0 (2.12b)

Also, χ1 andχ2 here are the primary constraints of the new GI theory, andχ3

is the Gauß law secondary constraint. The matrix of the PBs of the constraints
χi is singular, implying that the setχi is first-class and that the theory is GI. The
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divergence of the vector gauge current of the theory also vanishes, showing that the
theory has at the classical level a local vector gauge symmetry. The action of the
theory is indeed seen to be invariant under the local vector gauge transformations
(LVGT) (Kulshreshtha, 1998):

δA+ = ∂−β, δA− = ∂+β, δφ = −β, δθ = −β (2.13a)

δ5+ = δ5− = δ5 = δ5θ = 0; β = β(x+, x−) (2.13b)

This new GI could therefore be quantized under some suitable light-cone gauges.
However, for recovering the physical content of the original GNI theory de-
scribed by (2.1b), we go to a unitary gauge∂µθ = 0 and choose the gauge-fixing
conditions

ν1 = −∂−θ = 0; ν2 = [5θ + ∂−φ − 2e(e− 1)A+ + 2e2A−] = 0 (2.14)

The gaugeνi translates the new GI theory into the original GNI theory and the
physical content of the new GI theory under this gaugeνi is the same as that
of the original GNI theory (2.1b). In Kulshreshtha (1998) this new GI theory
has been Hamiltonian- and BRST-quantized under some specific gauge choices
(cf. Kulshreshtha, 1998, for the details).

3. CONSTRUCTION OF THE GI THEORY:
THE STUECKELBERG TERM

For constructing a GI theory corresponding toSN (2.1), we calculate the
Stueckelberg term forSN. For this, we enlarge the Hilbert space of the GNI the-
ory defined by (2.1), and introduce a new fieldθ , called the Stueckelberg field
(Kulshreshtha, 1998; Kulshreshthaet al., 1993a, 1994a,b,c; Stueckelberg, 1941,
1957), through the following redefinition of fieldsφ and Aµ in the original ac-
tion SN (the motivation for which comes from the gauge transformations (4.7)
of the expected GI theory (3.2)) (Kulshreshtha, 1998; Kulshreshthaet al., 1993a,
1994a,b,c; Stueckelberg, 1941, 1957):

φ→ 8 = φ − θ and Aµ→A µ = Aµ + ∂µθ (3.1)

Here, the Stueckelberg fieldθ is a full quantum field. Performing the changes (3.1)
in SN (2.1), we obtain the modified action as

SI (= SN + SS) =
∫

L Idx0 dx1 =
∫

(L N + L S) dx0 dx1 (3.2a)

L I = L N + L S (3.2b)

SS =
∫

L Sdx0 dx1 (3.2c)
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L S =
[

1

2
(1− 2e){(∂0θ )2− (∂1θ )2} − {(∂0φ)(∂0θ )− (∂1φ)(∂1θ )}

+ e(∂0φ + ∂1φ)(∂0θ − ∂1θ )− e(A0− A1)(∂0θ + ∂1θ )

+ 1

2
e2(∂0θ − ∂1θ )2+ e2(A0− A1)(∂0θ − ∂1θ )− 2e2(∂1θ )2

− 4e2A1(∂1θ )

]
(3.2d)

HereL N andSN are defined by (2.1) andSS is the appropriate Stueckelberg term
corresponding to the GNI actionSN (2.1). We shall see later that the actionSI (3.2)
describes a GI theory. The Euler–Lagrange equations of motion obtained fromL I

(3.2) are (
∂2

0 − ∂2
1

)
φ = [e(∂0+ ∂1)(A1− A0)+ (1− e)

(
∂2

0 − ∂2
1

)
θ

+ e∂1(∂1θ − ∂0θ )
]

(3.3a)

∂1(∂1A0− ∂0A1) = [e(∂0+ ∂1)φ + e2(A0− A1)+ (e2− e)∂0θ

− (e2+ e)∂1θ ] (3.3b)

∂0(∂1A0− ∂0A1) = [e(∂0+ ∂1)φ + e2(A0− A1)+ 4e2A1+ (e2− e)∂0θ

+ (3e2− e)∂1θ ] (3.3c)[
(1− e)

(
∂2

0 − ∂2
1

)
φ − (e− 1)2∂2

0θ + (3e2− 2e+ 1)∂2
1θ
]

= [(e2− e)∂0(A0− A1)− (e2+ e)∂1(A0− A1)

− 4e2∂1A1− 2e2∂0∂1θ ] (3.3d)

With the help of these equations and the appropriate definition of the vector gauge
current densityj µ, we would be able to see in Section 4, that the four-divergence
of the vector current densityj µ (i.e.,∂µ j µ) for this theorySI (3.2) vanishes, and
thereby implying that the theorySI possesses (at the classical level) a local vector
gauge symmetry (LVGS) or that it does not possess any vector gauge anomaly.
Also, we will see in the next section that the theorySI (3.2) describes a constrained
theory possessing a set of three first-class constraints, implying in an alternative
way that the systemSI (3.2) is GI. In the next section, we would also obtain
explicitly the gauge transformations under which the system defined by the action
SI (3.2) remains invariant. In fact, we would be able to recover the physical content
of the GNI theory defined by the actionSN (2.1), from the GI theory described
by SI (3.2), under some special choice of gauge (cf. Section 4). The quantum
equivalence of the systems defined by the actionsSN (2.1) andSI (3.2) (under the
said special gauge), would be discussed in the next section.
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4. THE HAMILTONIAN FORMULATION AND OPERATOR
SOLUTION OF THE GI THEORY

4.1. The Hamiltonian Formulation

In this section, we consider the Hamiltonian formulation of the GI theoryL I

constructed from the GNI theoryL N in the last section using the Stueckelberg
method. The momenta canonically conjugate respectively to the field variables
A0, A1, φ andθ obtained from the Lagrangian densityL I (3.2) are

50 : = ∂L I

∂(∂0A0)
= 0 (4.1a)

E = 51 : = ∂L I

∂(∂0A1)
= (∂0A1− ∂1A0) (4.1b)

5 : = ∂L I

∂(∂0φ)
= ∂0φ + e(A0− A1)+ (e− 1)∂0θ − e∂1θ (4.1c)

5θ : = ∂L I

∂(∂0θ )
= [(e− 1)2∂0θ + (e− 1)∂0φ + e∂1φ − e(A0− A1)

+ e2(A0− A1− ∂1θ )] (4.1d)

= [(e− 1)5+ e∂1φ − e∂1θ ] (4.1e)

L I is thus seen to possess two primary constraints

ψ1 = 50 ≈ 0 (4.2a)

ψ2 = [5θ − (e− 1)5− e∂1φ + e∂1θ ] ≈ 0 (4.2b)

The canonical Hamiltonian density corresponding to the Lagrangian densityL I

(3.2) is

H I
c =

[
1

2
(E2+52)+ 1

2
(∂1φ)2+ E∂1A0− e(A0− A1)(5+ ∂1φ − ∂1θ )

+ 2e2A2
1+

1

2
(∂1θ )2+ (e− 1)(∂1φ)(∂1θ )− e(2e+ 1)(∂1θ )2

+ e5∂1θ + 4e2A1∂1θ

]
(4.3)

After implementing the primary constraintsψ1 and ψ2 in the canonical
Hamiltonian densityH I

c with the help of Lagrange multiplier fieldsu and v,
the total Hamiltonian densityH I

T could be written as

H I
T =H I

c +50u+ [(1− e)5+5θ − e∂1φ + e∂1θ ]v (4.4)
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The Hamilton’s equations of motion of the theory obtained from the total
HamiltonianH I

T =
∫

H I
T dx1 are

∂0φ = ∂H I
T

∂5
= 5− e(A0− A1)+ e∂1θ + (1− e)v (4.5a)

−∂05 = ∂H I
T

∂φ
= −∂2

1φ + e∂1(A0− A1)− (e− 1)∂2
1θ + e∂1v (4.5b)

∂0A0 = ∂H I
T

∂50
= u (4.5c)

−∂050 = ∂H I
T

∂A0
= −∂1E − e(5+ ∂1φ − ∂1θ ) (4.5d)

∂0A1 = ∂H I
T

∂E
= E + ∂1A0 (4.5e)

−∂0E = ∂H I
T

∂A1
= e(5+ ∂1φ − ∂1θ )+ 4e2(A1+ ∂1θ ) (4.5f)

∂0θ = ∂H I
T

∂5θ

= v (4.5g)

−∂05θ = ∂H I
T

∂θ
= [−e∂1(A0− A1)− ∂2

1θ − (e− 1)∂2
1φ + 2e(2e+ 1)∂2

1θ

− e∂15− 4e2∂1A1− e∂1v
]

(4.5h)

∂0u = ∂H I
T

∂5u
= 0 (4.5i)

−∂05u = ∂H I
T

∂u
= 50 (4.5j)

∂0v = ∂H I
T

∂5v
= 0 (4.5k)

−∂05v = ∂H I
T

∂v
= [(1− e)5+5θ − e∂1φ + e∂1θ ] (4.5l)

For the PB{ , }p of two functionsA andB we choose the convention

{A(x), B(y)}P :=
∫

dz
∑
α

[
∂A(x)

∂qα(z)

∂B(y)

∂pα(z)
− ∂A(x)

∂pα(z)

∂B(y)

∂qα(z)

]
(4.5)

Now the requirement of the preservation in time of the primary constraintψ1 leads
to the secondary constraint:

ψ3 : = {ψ1, H I
T

}
P = [∂1E + e(5+ ∂1φ − ∂1θ )] ≈ 0 (4.6)
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The preservation ofψ2 andψ3 for all time, however, does not give rise to any
further constraints. The theory is thus seen to possess three constraintsψ1,ψ2, and
ψ3. Also the matrix of the PBs of the constraintsψi is seen to be singular, thereby
implying that the constraintsψi form a set of first-class constraints (Kulshreshtha,
1998; Kulshreshthaet al., 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Muller-
Kirsten, 1992) and that the theoryL I describes a gauge invariant theory. In fact
the Lagrangian densityL I is seen to be invariant under the time-dependent chiral
gauge transformations:

δφ = −β(x, t); δA0 = ∂0β(x, t); δA1 = ∂1β(x, t) (4.7a)

δθ = −β(x, t); δu = ∂0∂0β(x, t); δv = −∂0β(x, t) (4.7b)

δ5 = δ50 = δE = δ5θ = δ5u = δ5v = 0 (4.7c)

whereβ(x, t) is an arbitrary function of the coordinates.
In quantizing the theory using Dirac’s procedure (Dirac, 1950), one has to

convert the set of first-class constraints of the theory into a set of second-class
ones. One achieves this by imposing, arbitrarily, some additional constraints on
the system in the form of gauge-fixing conditions. Following the work of Mitra and
Rajaraman (1988), Girottiet al.(1986), Boyanovski (1987), and Falck and Kramer
(1987) we go to a special gauge given by∂µθ = 0 (or equivalently,∂0θ = θ̊ = 0
and−∂1θ = −θ ′ = 0), and accordingly we choose the gauge-fixing conditions of
the theory as (Boyanovski, 1987; Falck and Kramer, 1987; Girottiet al., 1986;
Mitra and Rajaraman 1988):

G 1 = −∂1θ ≈ 0 (4.8a)

G 2 = [( A0+ A1)− (5+5θ )+ e(5+ ∂1φ)] ≈ 0 (4.8b)

With the gauge-fixing conditions (4.8) the total set of constraints of the theory
becomes

ξ1 = ψ1 = 50 ≈ 0 (4.9a)

ξ2 = ψ2 = [5+5θ − e(5+ ∂1φ)+ e∂1θ ] ≈ 0 (4.9b)

ξ3 = ψ3 = [∂1E + e(5+ ∂1φ − ∂1θ )] ≈ 0 (4.9c)

ξ4 = G 1 = −∂1θ ≈ 0 (4.9d)

ξ5 = G 2 = [ A0+ A1− (5+5θ )+ e(5+ ∂1φ)] ≈ 0 (4.9e)

The matrix of PBs of the constraintsξi namely,Nαβ(z, z′): = {ξα(z), ξβ(z′)}p, is
then calculated. The nonvanishing matrix elements of the matrixNαβ(z, z′) are

N15 = −N51 = −δ(z− z′) (4.10a)

N22 = N33 = 2e2∂1δ(z− z′) (4.10b)
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N23 = N32 = −2e2∂1δ(z− z′) (4.10c)

N25 = N52 = (2e2− 1)∂1δ(z− z′) (4.10d)

N34 = N43 = −∂1δ(z− z′) (4.10e)

N35 = N53 = −e(2e− 1)∂1δ(z− z′) (4.10f)

N45 = N54 = +∂1δ(z− z′) (4.10g)

N55 = 2e(e− 1)∂1δ(z− z′) (4.10h)

The matrix Nαβ is seen to be nonsingular and therefore its inverse exists. The
nonvanishing elements of the inverse of the matrixNαβ (i.e., the elements of the
matrix (N−1) αβ are

(N−1)11 = (1/2e2)∂1δ(z− z′) (4.11a)

(N−1)12 = −(N−1)21 = (1/2e2)δ(z− z′) (4.11b)

(N−1)13 = −(N−1)31 = δ(z− z′) (4.11c)

(N−1)14 = −(N−1)41 = −(1− e)δ(z− z′) (4.11d)

(N−1)15 = −(N−1)51 = δ(z− z′) (4.11e)

(N−1)22 = (1/4e2) ε (z− z′) (4.11f)

(N−1)24 = (N−1)42 = −
(

1

2

)
ε (z− z′) (4.11g)

(N−1)34 = (N−1)43 = −
(

1

2

)
ε (z− z′) (4.11h)

with ∫
N(x, z)N−1(z, y)dz= 15×5δ(x − y) (4.12)

Hereε(z− z′) is a step function defined as

ε(z− z): =
{+1, (z− z′) > 0
−1, (z− z′) < 0

(2.9)

Finally, the nonvanishing equal-time commutators of the GI theory described by
L I under the gauge (4.8) are obtained as

[φ(x),5(y)] = 3

2
i δ(x − y) (4.13a)

[ A1(x),5(y)] = −i

2e
δ(x − y) (4.13b)

[ A1(x), E(y)] = i δ(x − y) (4.13c)
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[ A0(x),5(y)] = −i

2e
∂1δ(x − y) (4.13d)

[ A0(x), E(y)] = −i δ(x − y) (4.13e)

[φ(x), φ(y)] = i

4
ε(x − y) (4.13f)

[φ(x), A1(y)] = −i

2e
δ(x − y) (4.13g)

[φ(x), A0(y)] = −i

2e
δ(x − y) (4.13h)

[ A1(x), A1(y)] =
(

i

2e2

)
∂1δ(x − y) (4.13i)

[ A1(x), A0(y)] =
(

i

2e2

)
∂1δ(x − y) (4.13j)

[ A0(x), A0(y)] =
(

i

2e2

)
∂1δ(x − y) (4.13k)

[5(x),5(y)] = i

2
∂1δ(x − y) (4.13l)

[φ(x),5θ (y)] =
(

i

2

)
δ(x − y) (4.13m)

[ A1(x),5θ (y)] =
(

1− 2e

2e

)
i ∂1δ(x − y) (4.13n)

[ A0(x),5θ (y)] =
(

1− 2e

2e

)
i ∂1δ(x − y) (4.13o)

[θ (x),5θ (y)] = 2i δ(x − y) (4.13p)

[ A0(x), θ (y)] = 2i δ(x − y) (4.13q)

[5(x),5θ (y)] = − i

2
∂1δ(x − y) (4.13r)

[5θ (x),5θ (y)] = i

2
∂1δ(x − y) (4.13s)

Following the squence of reasoning offered in (Falck and Kramer, 1987;
Kulshreshtha, 1998; Kulshreshthaet al., 1993a, 1994a,b,c), it is easy to see that
(4.13) together withH I

c (4.3) under the gauge (4.8) reproduce precisely the quan-
tum system described byL N (2.1) (Falck and Kramer, 1987). The gauge (4.8)
translates the GI version of the theory described byL I into the GNI one described
by L N. A comparision of (2.8) and (4.13) reveals that (4.13a)–(4.13l) coincide
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completely with (2.8) as they should. The additional commutators appearing in
(4.13) (viz., (4.13m)–(4.13s)) express merely the dependence onθ and5θ . Infact,
the physical Hilbert spaces of the two theories (L I andL N) are the same. The
addition of the Stueckelberg term (L S) to the theory (i.e., toL N) enlarges only
the unphysical part of the full Hilbert space of the theoryL N, without modifying
the physical content of the theory. The Stueckelberg fieldθ itself, in fact, repre-
sents only an unphysical degree of freedom and correspondingly the physics of
the theories with and without the Stueckelberg term remains the same (Falck and
Kramer, 1987).

For the latter use (in the next section), for considering the BRST formulation
of the gauge-invariant theory described byL I , we convert the total Hamiltonian
densityH I

T into the first-order Langrangian density

L I
I0 = 5(∂0φ)+ E(∂0A1)+50(∂0A0)+5θ (∂0θ )+5u(∂0u)

+5v(∂0v)−H I
T (4.14a)

=
[
5(∂0φ)+ E(∂0A1)+5u(∂0u)+5v(∂0v)− 1

2
(E2+52+ (∂1φ)2)

− E(∂1A0)+ e(A0− A1)(5+ ∂1φ)− 2e2A2
1−

1

2
(∂1θ )2

− (e− 1)(∂1φ)(∂1θ )+ e(1+ 2e)(∂1θ )2− e(A0− A1)∂1θ − e5∂1θ

− 4e2A1∂1θ − (∂0θ )(5− e5− e∂1φ + e∂1θ )

]
(4.14b)

The generator of the LVGT is the charge operator of the theory:

J0 =
∫

j 0 dx (4.15a)

j 0 = [(∂1β)(∂0A1− ∂1A0)− β[e∂0φ + (e2− e)∂0θ − (e2+ e)∂1θ

+ e∂1φ + e2(A0− A1)]
]

(4.15b)

The current operator of the theory is

J1 =
∫

j 1 dx (4.16a)

j 1 = [β[(3e2− e)∂1θ + (e2− e)∂0θ + e∂0φ + e∂1φ + e2A0+ 3e2A1]

− (∂0β)(∂0A1− ∂1A0)
]

(4.16b)

The divergence of the vector current density, namely,∂µ j µ is therefore seen to
vanish, implying that the theory possesses at the classical level a local vector
gauge symmetry (LVGS).
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4.2. The Operator Solution

In this section, we obtain the operator solution (Floreanini and Jackiw, 1987;
Harada, 1990a,b; Harada and Isutsui, 1988; Kimet al., 1990, 1991, 1992) of the
GI theory (3.2) under the gaugeGi (4.8).

From the constraints (4.2) and (4.6) of the GI theory (3.2), we chooseφ,5, A1,
andE as the independent variables (IVs) of the theory and the remaining (depen-
dent) variables (DVs) are expressed by these IVs as

50 = 0 (4.17a)

A0 = −A1 (4.17b)

5θ = −(5+ E′) (4.17c)

The nonvanishing equal-time (canonical as well as noncanonical) commutation
relations of the theory under the gauge (4.8) are given by (4.13). The reduced
Hamiltonian densityHI

R of the theory (3.2) (obtained by implementing the con-
straints of the theory strongly) expressed in terms of IVs could then be written
as

HI
R =

[
1

2
(E2+52+ (∂1φ)2− E(∂1A1)+ 2eA1(5+ ∂1φ)+ 2e2A2

1

]
(4.18)

The field equation derived from the Heisenberg equations are

∂0φ = −i
[
φ, H I

R

] = (5+ 2eA1) (4.19a)

∂05 = −i
[
5, H I

R

] = (∂1∂1φ + 2e∂1A1) (4.19b)

∂0A1 = −i
[
A1, H I

R

] = (E − ∂1A1) (4.19c)

∂0E = −i
[
E, H I

R

] = [−∂1E − 2e(5+ ∂1φ)+ 4e2A1] (4.19d)

where

H I
R =

∫
dxHI

R (4.20)

is the reduced Hamiltonian of the theory. Now using (4.17)–(4.20), we obtain the
following equations:

¤φ = [−e(∂µAµ − εµν∂µAν)] (4.21a)

∂µFµν = [−2e2Aν − e(gνα + ενα)∂αφ] (4.21b)

[∂µAµ + εµν∂µAν ] = 0 (4.21c)

The equations (Eq. (4.21)) are now solved and the most general solution of (4.21)
gives

φ = [σ − h] (4.22a)



P1: FMN/GFU

International Journal of Theoretical Physics [ijtp] PP232-343687 September 7, 2001 10:10 Style file version Nov. 19th, 1999

Gauge-Invariant Chiral Schwinger Model With Faddeevian Regularization 1787

Aµ =
(−1

2e

)
[∂µφ + εµν∂νφ + 2εµν∂

νh] (4.22b)

(¤+m2)σ = 0; m= 2|e| (4.22c)

¤h = 0 (4.22d)

where the free fieldsσ andh are expressed in terms of the IV’s as

σ =
[
− 1

2e
E

]
(4.23a)

h =
[
− 1

2e
E − φ

]
(4.23b)

Here the fieldσ is a massive field and the fieldh is a massless field as is evident
from (4.22). The two-dimensional (unequal-time:x0 6= y0) commutation relations
involving the free fieldsσ andh are (withx ≡ xµ, y = yµ)

[σ (x), σ (y)] = i1(x − y; m2) (4.24a)

[h(x), h(y)] = i D(x − y) = i1(x − y; 0) (4.24b)

where

1(x − y; m2) = (2π i )−1
∫

d2k ε(k0)δ(k2−m2) e−ikx (4.25a)

D(x − y) = 1(x − y; 0) (4.25b)

and the propagator forAµ is given by

iDµν(k) =
∫

d2x eikx〈0|T∗Aµ(x)Aν(0)|0〉 (4.26)

whereAµ(x) is defined by (4.22).

5. THE BRST FORMULATION OF THE GI THEORY

5.1. BRST Invariance

For the BRST formulation of the theory, we rewrite the GI theory described
by L I as a quantum system that possesses the generalized gauge invariance called
BRST symmetry. For this, we enlarge the Hilbert space of our GI theory and
introduce new anticommuting variablesc andc̄ (which are grassmann numbers on
the classical level and operators in the quantized theory) and a commuting variable
b such that (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998, 2000;
Kulshreshthaet al., 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Kulshreshtha,
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2001, in press; Kulshreshtha and Muller-Kirsten, 1992; Nameshchanskyet al.,
1988; Tyutin, 1975)

δ̂φ = −c; δ̂A0 = ∂0c; δ̂A1 = ∂1c; δ̂θ = −c; δ̂u = ∂0∂0c (5.1a)

δ̂v = −∂0c δ̂5 = δ̂E = δ̂50 = δ̂5θ = δ̂5u = δ̂5v = 0 (5.1b)

δ̂c = 0; δ̂c̄ = b; δ̂b = 0 (5.1c)

with the propertŷδ
2 = 0. We then define a BRST-invariant function of the dynam-

ical variables to be a functionf (5,50, E,5θ ,5b,5c,5c̄, φ, A0, A1, θ , b, c, c̄)
such that̂δ f = 0.

5.2. Gauge Fixing in the BRST Formalism

Performing gauge fixing in the BRST formalism implies adding to the first-
order Lagrangian density (4.14) a function that is trivially BRST-invariant (Becchi
et al., 1974; Henneaux, 1985; Kulshreshtha, 1998; Nameshchanskyet al., 1988;
Tyutin, 1975). We thus write the gauge-fixed quantum Lagrangian density (taking
e.g., a trivial BRST-invariant function as follows) (Becchiet al., 1974; Henneaux,
1985; Kulshreshtha, 1998; Nameshchanskyet al., 1988; Tyutin, 1975):

L BRST=
[
5(∂0φ)+ E(∂0A1)+5u(∂0u)+5v(∂0v)− 1

2
(E2+52+ (∂1φ)2)

− E(∂1A0)+ e(A0− A1)(5+ ∂1φ)− 2e2A2
1−

1

2
(∂1θ )2

− (e− 1)(∂1φ)(∂1θ )+ e(1+ 2e)(∂1θ )2− e(A0− A1)∂1θ

− e5∂1θ − 4e2A1∂1θ − (∂0θ )(5− e5− e∂1φ + e∂1θ )

+ δ̂
[
c̄

(
∂0A0− A1− φ − ∂1θ + 1

2
b

)]]
(5.2)

The last term in the above equation is the extra BRST-invariant gauge-fixing
term. Using the definition of̂δ we can rewriteL BRST (with one integration by
parts) as

L BRST=
[
5(∂0φ)+ E(∂0A1)+5u(∂0u)+5v(∂0v)− 1

2
(E2+52+ (∂1φ)2)

− E(∂1A0)+ e(A0− A1)(5+ ∂1φ)− 2e2A2
1−

1

2
(∂1θ )2

− (e− 1)(∂1φ)(∂1θ )+ e(1+ 2e)(∂1θ )2− e(A0− A1)∂1θ
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− e5∂1θ − 4e2A1∂1θ − (∂0θ )(5− e5− e∂1φ + e∂1θ )

+ 1

2
b2− b(φ + ∂1θ − ∂0A0+ A1)− c̄c+ (∂0c̄)(∂0c)

]
(5.3)

Proceeding classically, the Euler–Lagrange equation forb reads

b = φ + (∂1θ − ∂0A0)+ A1 (5.4)

Also, the requirement̂δb = 0 (cf. (5.1)) implies

δ̂b = (δ̂φ + δ̂∂1θ − δ̂∂0A0+ δ̂A1) = 0 (5.5)

which in turn implies

−∂0∂0c = c (5.6)

The above equation is also an Euler–Lagrange equation obtained by the variation
of L BRST with respect tōc. In introducing the momenta we have to be careful in
defining those for the fermionic variables. Thus we define the bosonic momenta
in the usual way so that

50 = ∂L BRST

∂(∂0A0)
= b (5.7)

but the fermionic momenta are defined using the directional derivatives such that
(Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998; Nameshchanskyet al.,
1988; Tyutin, 1975):

5c: = L BRST

E

∂

∂(∂0c)
= ∂0c̄; 5c̄: =

E∂
∂(∂0c̄)

L BRST= ∂0c (5.8)

implying that the variable canonically conjugate toc is ∂0c̄ and the variable con-
jugate toc̄ is ∂0c. In constructing the quantum Hamiltonian densityH BRST from
the Lagrangian density in the usual way, we remember that the former has to
be Hermitian. Accordingly, we have (Becchiet al., 1974; Henneaux, 1985;
Kulshreshtha, 1998; Nameshchanskyet al., 1988; Tyutin, 1975)

H BRST= [5(∂0φ)+ E(∂0A1)+50(∂0A0)+5θ (∂0θ )+5u(∂0u)+5v(∂0v)

+ 5c(∂0c)+ (∂0c̄)5c̄ − L BRST]

=
[

1

2
(E2+52+ (∂1φ)2)+ E(∂1A0)− e(5+ ∂1φ)(A0− A1)
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+ 2e2A2
1+

1

2
(∂1θ )2+ (e− 1)(∂1φ)(∂1θ )− e(1+ 2e)(∂1θ )2

+ e(∂1θ )(A0− A1)+ e5∂1θ + 4e2A1(∂1θ )+50(φ + ∂1θ + A1)

− 1

2
52

0+5c5c̄ + c̄c

]
(5.9)

We can check the consistency of (5.8) with (5.9) by looking at Hamilton’s equations
for the fermionic variables

∂0c =
E∂
∂5c

H BRST, ∂0c̄ =H BRST

E

∂

∂5c̄
(5.10)

thus we see that

∂0c =
E∂
∂5c

H BRST= 5c̄; ∂0c̄ =H BRST

E

∂

∂5c̄
= 5c (5.11)

is in agreement with (5.8). For the operatorsc, c̄, ∂0c, and∂0c̄, one needs to specify
the anticommutation relations of∂0c with c̄ or of ∂0c̄ with c, but not ofc with c̄. In
general,c andc̄ are independent canonical variables and one assumes that (Becchi
et al., 1974; Henneaux, 1985; Kulshreshtha, 1998; Nameshchanskyet al., 1988;
Tyutin, 1975)

{5c,5c̄} = {c̄, c} = 0 (5.12a)

d

dt
{c̄, c} = 0 or {∂0c̄, c} = −{∂0c, c̄} (5.12b)

where{ ,} means an anticommutator. We thus see that the anticommutators in
(5.12b) are nontrivial and need to be fixed. To fix these, we demand thatc satisfy
the Heisenberg equation (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998;
Nameshchanskyet al., 1988; Tyutin, 1975):

[c, H BRST] = i ∂0c (5.13)

and using the propertyc2 = c̄2 = 0 one obtains

[c, H BRST] = {∂0c̄, c}∂0c (5.14)

Equations (5.12)–(5.14) then imply:

{∂0c̄, c} = −{∂0c, c̄} = i (5.15)

Here the minus sign in the above equation implies the existence of states with
negative norm in the space of state vectors of the theory (Becchiet al., 1974;
Henneaux, 1985; Kulshreshtha, 1998; Nameshchanskyet al., 1988; Tyutin, 1975).
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The properties obeyed by fermionic variables could thus be summarized in a
single equation (for further discussions) as

c2 = c̄2 = {c̄, c} = {∂0c̄, ∂0c} = 0; {∂0c̄, c} = i = −{∂0c, c̄} (5.16)

5.3. The BRST Charge Operator

The BRST charge operatorQ is the generator of the BRST transformations
(5.1). It is nilpotent and satisfiesQ2 = 0. It mixes operators that satisfy Bose
and Fermi statistics. According to its conventional definition, its commutators
with Bose operators and its anticommutators with Fermi operators for the present
theory satisfy

[5, Q] = −e(∂1c− ∂0∂1c) (5.17a)

[5θ , Q] = +e(∂1c+ ∂0∂1c) (5.17b)

[φ, Q] = −(e− 1)∂0c− ec; [θ , Q] = +∂0c (5.17c)

[ A1, Q] = +∂1c; [ A0, Q] = +∂0c (5.17d)

{c̄, Q} = [e5+ e∂1φ − e∂1θ −50−5−5θ ] (5.17e)

{∂0c̄, Q} = [e∂1θ − ∂1E − e(5+ ∂1φ)] (5.17f)

All other commutators and anticommutators involvingQ vanish. In view of (5.17),
the BRST charge operator of the present gauge invariant theory can be written as

Q =
∫

dx{ic[∂1E + e(5+ ∂1φ)− e∂1θ ]

− i ∂0c[50+5+5θ − e(5+ ∂1φ)+ e∂1θ ]} (5.18)

This equation implies that the set of states satisfying the conditions (4.2) and (4.6)
belongs to the dynamically stable subspace of states|ψ〉 satisfyingQ|ψ〉 = 0, i.e.,
it belongs to the set of BRST-invariant states.

To understand the condition needed for recovering the physical states of
the theory we rewrite the operatorsc andc̄ in terms of fermionic annihilation and
creation operators. For this purpose we consider (5.6). The solution of this equation
(Eq. (5.6)) gives the Heisenberg operatorc(t) (and correspondinglȳc(t)) as

c(t) = eit B+ e−i t D; c̄(t) = e−i t B† + eit D† (5.19)

which at timet = 0 imply

c ≡ c(0)= B+ D; c̄ ≡ c̄(0)= B† + D† (5.20a)

c̊ ≡ c̊(0)= i (B− D); ˚̄c ≡ ˚̄c(0)= −i (B† − D†) (5.20b)
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By imposing the conditions (5.16), we now obtain the equations

B2+ {B, D} + D2 = B†2+ {B†, D†} + D†2 = 0 (5.21a)

{B, B†} + {D, D†} + {B, D†} + {B†, D} = 0 (5.21b)

{B, B†} + {D, D†} − {B, D†} − {B†, D} = 0 (5.21c)

{B, B†} − {D, D†} − {B, D†} + {D, B†} = −1 (5.21d)

{B, B†} − {D, D†} + {B, D†} − {D, B†} = −1 (5.21e)

with the solution

B2 = D2 = B†2 = D†2 = 0 (5.22a)

{B, D} = {B† + D} = {B, D†} = {B†, D†} = 0 (5.22b)

{B†, B} = −1

2
; {D†, D} = 1

2
(5.22c)

We now let|0〉 denote the fermionic vacuum for which

B|0〉 = D|0〉 = 0 (5.23)

Defining|0〉 to have norm one, (5.22c) implies

〈0|B B†|0〉 = −1

2
; 〈0|DD†|0〉 = +1

2
(5.24)

so that

B†|0〉 6= 0; D†|0〉 6= 0 (5.25)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
H BRST is, however, irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators

H BRST=
1

2
(E2+52+ (∂1φ)2)+ E∂1A0− e(5+ ∂1φ)(A0− A1)+ 2e2A2

1

+ 1

2
(∂1θ )2+ (e− 1)(∂1φ)(∂1θ )− e(1+ 2e)(∂1θ )2

+ e(∂1θ )(A0− A1)+ e5∂1θ + 4e2A1∂1θ +50(φ + ∂1θ + A1)

− 1

2
52

0+ 2(B†B+ D†D) (5.26)
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and the BRST charge operatorQ is

Q =
∫

dx{i B[(∂1E + e(5+ ∂1φ)− e∂1θ )− i (50+5+5θ

− e(5+ ∂1φ)+ e∂1θ )] + i D [(∂1E + e(5+ ∂1φ)− e∂1θ )

+ i (50+5+5θ − e(5+ ∂1φ)+ e∂1θ )]} (5.27)

Now becauseQ|ψ〉 = 0, the set of states annihilated byQ contains not only the set
of states for which (4.2) and (4.6) hold but also additional states for whichB|ψ〉 =
D|ψ〉 = 0 and for which (4.2), and (4.6) do not hold. However, the Hamiltonian
is also invariant under the anti-BRST transformation given by

-̂
δφ = c̄;

-̂
δA0 = −∂0c̄;

-̂
δA1 = −∂1c̄;

-̂
δθ = c̄;

-̂
δu = −∂0∂0c (5.28a)

-̂
δv = ∂0c,

-̂
δ5 = -̂

δE = -̂
δ50 = -̂

δ5θ = -̂
δ5u = -̂

δ5v = 0 (5.28b)
-̂
δc̄ = 0;

-̂
δc = −b;

-̂
δb = 0 (5.28c)

with the generator or anti-BRST charge

Q̄ =
∫

dx{−i c̄[(∂1E + e(5+ ∂1φ)− e∂1θ ] + i ∂0c̄[50+5+5θ

− e(5+ ∂1φ)+ e∂1θ ]}
=
∫

dx{−i B†[(∂1E + e(5+ ∂1φ)− e∂1θ )− i (50+5+5θ − e(5+ ∂1φ)

+ e∂1θ )] − i D†[(∂1E + e(5+ ∂1φ)− e∂1θ )+ i (50+5+5θ

− e(5+ ∂1φ)+ e∂1θ )]} (5.29)

We also have

∂0Q = [Q, HBRST] = 0 (5.30a)

∂0Q̄ = [ Q̄, HBRST] = 0 (5.30b)

with

HBRST=
∫

dx H BRST (5.30c)

and we further impose the dual condition that bothQ and Q̄ annihilate physical
states, implying that

Q|ψ〉 = 0 and Q̄|ψ〉 = 0 (5.31)

The states for which (4.2) and (4.6) hold strongly satisfy both of these conditions
and, in fact, are the only states satisfying both conditions, since although with
(5.22)

2(B†B+ D†D) = −2(B B† + DD†) (5.32)
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there are no states of this operator withB†|0〉 = 0 andD†|0〉 = 0 (cf. 5.25)), and
hence no free eigenstates of the fermionic part ofHBRST which are annihilated by
each ofB, B†, D, D†. Thus the only states satisfying (5.31) are those satisfying
the constraints (4.2) and (4.6). Further, the states for which (4.2) and (4.6) satisfy
both of these conditions (5.31) and, in fact, are the only states satisfying both of
these conditions (5.31), because in view of (5.20) one cannot have simultaneously
c, ∂0c andc̄, ∂0c̄, applied to|ψ〉 to give zero. Thus the only states satisfying (5.31)
are those that satisfy the constraints of the theory (4.2) and (4.6) and they belong
to the set of BRST-invariant and anti-BRST-invariant states.

Alternatively, in terms of fermionic annihilation and creation operators, the
condition Q|ψ〉 = 0 implies that the set of states annihilated byQ contains not
only the states for which (4.2) and (4.6) holds but also additional states for which
50|ψ〉 6= 0, [5+5θ − e(5+ ∂1φ)+ e∂1θ ]|ψ〉 6= 0, and [∂1E + e(5+ ∂1φ −
∂1θ )]|ψ〉 6= 0. HoweverQ̄|ψ〉 = 0 guarantees that the set of states annihilated
by Q̄ contains only the states for which50|ψ〉 = 0, [5+5θ − e(5+ ∂1φ)+
e∂1θ ]|ψ〉 = 0, and [∂1E+ e(5+ ∂1φ− ∂1θ )]|ψ〉 = 0, simply becauseB†|ψ〉 6= 0
andD†|ψ〉 6= 0. Thus in this alternative way we also see that the states satisfying
Q|ψ〉 = Q̄|ψ〉 = 0 (i.e., satisfying (5.31)) are only those states that satisfy the con-
straints of the theory and also that these states belong to the set of BRST-invariant
and anti-BRST-invariant states.

6. CONCLUSIONS AND DISCUSSIONS

In this work we have constructed a GI theory corresponding to a GNI-CSM
with the Faddeevian regularization due to Mitra (Mitra, 1992; Mukhopadhyay
and Mitra, 1995a,b) through the so-called Stueckelberg term (Kulshreshtha, 1998;
Kulshreshthaet al., 1993a, 1994a,b,c; Stueckelberg, 1941, 1957), the addition of
which to the action of the original GNI theory restores the gauge-invariance to the
theory. The canonical structure, constrained dynamics, and the Hamiltonian and
BRST quantization and the operator solutions of this newly constructed GI theory
obtained by the inclusion of the Stueckelberg term to the action of the GNI theory
have been studied in the conventional form of dynamics on the hyperplanesx0 =
constant, called the instant form of dynamics (Dirac, 1949). This theory has been
studied in a recent paper (Kulshreshtha, 1998) on the hyperplanes of the light front
(x0+ x1) = constant, describing the front form of dynamics.

The original theory `a la Mitra (Mitra, 1992; Mukhopadhyay and Mitra,
1995a,b) is seen to be GNI in both the forms of dynamics, namely, in the in-
stant form, as seen in the present work, as well as in the light-front frame (or
the FF) (Kulshreshtha, 1998). In both the cases, the theory possessesa set of
second-class constraints (Kulshreshtha, 1998; Mitra, 1992; Mukhopadhyay and
Mitra, 1995a,b) and has a nonzero divergence of the vector gauge current im-
plying that the theory does not have a local vector gauge symmetry (or that it
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is gauge-anomalous) in both the forms (IF and FF) of dynamics (Kulshreshtha,
1998; Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b). The FF theory has been
studied in Kulshreshtha (1998), where we have constructed a GI theory from the
corresponding GNI theory through the Stueckelberg term (Kulshreshtha, 1998).
The Hamiltonian and BRST quantizations of this FF–GI theory have also been
studied in Kulshreshtha (1998). The physical content of the original GNI theory in
FF has also been recovered from that of the FF-GI theory under a special choice of
gauge in Kulshreshtha (1998). In the present work, which is in the IF of dynamics,
we see that the original GNI theory due to Mitra (Mitra, 1992; Mukhopadhyay
and Mitra, 1995a,b) possesses a set of three second-class constraints that make
the theory gauge anomalous (Mitra, 1992; Mukhopadhyay and Mitra, 1995a,b)
(cf. Section 2). On the other hand, the GI theory as constructed in Section 3
through the Stueckelberg term is seen to possess a set of three first-class con-
straints. It is also seen to have a zero divergence for the vector gauge current,
signifying that the theory is no longer gauge-anomalous and also that the vector
gauge symmetry has been restored to the theory (cf. Section 3). The Hamiltonian
quantization and the operator solutions of the newly constructed GI theory have
been studied under a special choice of gauge given by (4.8). The total set of
constraints (given by (4.9)) of this new GI theory under the gauge (4.8) clearly
becomes second class and the Dirac quantization of this GI theory could therefore
be achieved under the gauge (4.8). The results of the Hamiltonian quantization of
the GI theory (3.2) under the gauge (4.8) are expressed in terms of the nonvan-
ishing equal-time commutators (4.13). Further, it is easy to see that the GI theory
L I (3.2) with (4.13) andH I

c (4.3) under the gauge (4.8) reproduce precisely
the quantum system described byL N (2.1) (Falck and Kramer, 1987). The gauge
(4.8) thus translates the GI version of the theory described byL I into the GNI
one described byL N (Falck and Kramer, 1987). Also, as observed in Section 3,
the physical Hilbert spaces of the theoriesL I and L N are the same, because
the Stueckelberg fieldθ represents only an unphysical degree of freedom (Falck
and Kramer, 1987). Also, in the above Hamiltonian quantization of the theory
under the gauge-fixing conditions one necessarily destroys the gauge invariance
of the theory by fixing the gauge. In view of this, to achieve the quantization
of the above GI theory such that the gauge invariance of the theory is main-
tained even under gauge-fixing, we go to a more generalized procedure called the
BRST quantization (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 2000;
Kulshreshthaet al., 1993a,b,c, 1994a,b,c, 1999; Kulshreshtha and Kulshreshtha,
2001; Kulshreshtha and Mueller-Kirsten, 1992; Nameshchanskyet al., 1988;
Tyutin, 1975). The BRST quantization of the present GI theory (3.2) constructed in
Section 3 (Corresponding to the GNI theory (2.1)) under some specific gauge
choice has finally been studied in Section 5. In this procedure, the BRST-quantized
theory continues to possess the generalized gauge invariance called the BRST
symmetry even under the BRST gauge fixing (cf. Section 5).
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